Note
Click here to download the full example code
UtilsΒΆ
This is the utils file for the PyTorch implementation
import torch
from abc import ABCMeta, abstractmethod
import matplotlib.pyplot as plt
import numpy as np
import torch.nn.functional as F
import torchvision
def prepare_device(n_gpu_use, gpu_id=None):
"""
setup specific GPU device if available, move model into configured device
"""
n_gpu = torch.cuda.device_count()
if n_gpu_use > 0 and n_gpu == 0:
print("Warning: There\'s no GPU available on this machine,"
"training will be performed on CPU.")
n_gpu_use = 0
if n_gpu_use > n_gpu:
print("Warning: The number of GPU\'s configured to use is {}, but only {} are available "
"on this machine.".format(n_gpu_use, n_gpu))
n_gpu_use = n_gpu
device = torch.device('cuda:{}'.format(gpu_id) if n_gpu_use > 0 else 'cpu')
print("Executing on device: ", device)
return device
class Metric:
def __init__(self):
self.reset()
@abstractmethod
def reset(self):
"""
Resets the metric to it's initial state.
This is called at the start of each epoch.
"""
pass
@abstractmethod
def update(self, output, target):
"""
Updates the metric's state using the passed batch output.
This is called once for each batch.
Args:
output: the is the output from the engine's process function.
target: target to match
"""
pass
@abstractmethod
def compute(self):
"""
Computes the metric based on it's accumulated state.
This is called at the end of each epoch.
Returns:
Any: the actual quantity of interest.
Raises:
NotComputableError: raised when the metric cannot be computed.
"""
pass
class Accuracy(Metric):
def __init__(self, is_multilabel=False, type=None):
self._is_multilabel = is_multilabel
self._type = type
# self._num_classes = None
self._num_correct = None
self._num_examples = None
self.best_accuracy = -1
super(Accuracy, self).__init__()
def reset(self):
# self._num_classes = None
self._num_correct = 0
self._num_examples = 0
super(Accuracy, self).reset()
def update(self, output, target, batch_compute=False, idx=None):
y_pred = output
if self._type == "binary":
correct = torch.eq(y_pred.view(-1).to(target), target.view(-1))
elif self._type == "multiclass":
pred = y_pred.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct = pred.eq(target.view_as(pred))
if batch_compute:
batch_dim = correct.shape[0]
batch_accuracy = torch.sum(correct).item() / batch_dim
if self._type == "multilabel":
# if y, y_pred shape is (N, C, ...) -> (N x ..., C)
num_classes = y_pred.size(1)
last_dim = y_pred.ndimension()
y_pred = torch.transpose(y_pred, 1, last_dim - 1).reshape(-1, num_classes)
target = torch.transpose(target, 1, last_dim - 1).reshape(-1, num_classes)
correct = torch.all(target == y_pred.type_as(target), dim=-1)
elif self._type == "semisupervised":
target = target[idx]
y_pred = y_pred[idx]
pred = y_pred.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct = pred.eq(target.view_as(pred))
# elif self._type == "semisupervised":
# output[data.idx_test], data.targets[data.idx_test]
self._num_correct += torch.sum(correct).item()
self._num_examples += correct.shape[0]
if batch_compute:
return batch_accuracy
def get_best(self):
return self.best_accuracy
def compute(self):
if self._num_examples == 0:
raise Exception('Accuracy must have at least one example before it can be computed.')
acc = self._num_correct / self._num_examples
if acc > self.best_accuracy:
self.best_accuracy = acc
return self._num_correct / self._num_examples
def matplotlib_imshow(img, one_channel=False):
if one_channel:
img = img.mean(dim=0)
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
if one_channel:
plt.imshow(npimg, cmap="Greys")
else:
plt.imshow(np.transpose(npimg, (1, 2, 0)))
def __weights_visualizer(self, layer, name, epoch):
# reshape filter >= firset dimension used as a batch, so we can see all filters
visualize = layer.mu.view(layer.in_channels * layer.out_channels, 1,
layer.kernel_size[0], layer.kernel_size[1])
# resize in b x 1 x w x h (1 channel)
vis_grid = torchvision.utils.make_grid(visualize.cpu())
self.writer.add_image(name, vis_grid, global_step=epoch)
def get_G_function(descr, eps):
GF = descr
if GF == "lin":
def G(x):
return x
elif GF == "abs":
def G(x):
return torch.abs(x)
elif GF == "eps":
def G(x):
return F.relu(torch.abs(x) - eps)
elif GF == "lineps":
def G(x):
return F.relu(x - eps) - F.relu(- x - eps)
elif GF == "squared":
def G(x):
return torch.pow(x, 2)
elif GF == "^3":
def G(x):
return torch.pow(x, 3)
else:
def G(x):
return x
return G
Total running time of the script: ( 0 minutes 0.000 seconds)