Note
Click here to download the full example code
main KarateΒΆ
This is the main file for the PyTorch Karate club example
import torch
import torchvision
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import argparse
import utils
import dataloader
from gnn_wrapper import GNNWrapper, SemiSupGNNWrapper
#
# # fix random seeds for reproducibility
# SEED = 123
# torch.manual_seed(SEED)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
# np.random.seed(SEED)
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=100, metavar='N',
help='input batch size for testing (default: 100)')
parser.add_argument('--epochs', type=int, default=100000, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.0001, metavar='LR',
help='learning rate (default: 0.0001)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--cuda_dev', type=int, default=0,
help='select specific CUDA device for training')
parser.add_argument('--n_gpu_use', type=int, default=1,
help='select number of CUDA device for training')
# parser.add_argument('--seed', type=int, default=1, metavar='S',
# help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=50, metavar='N',
help='logging training status cadency')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
parser.add_argument('--tensorboard', action='store_true', default=True,
help='For logging the model in tensorboard')
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
if not use_cuda:
args.n_gpu_use = 0
device = utils.prepare_device(n_gpu_use=args.n_gpu_use, gpu_id=args.cuda_dev)
# kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
# torch.manual_seed(args.seed)
# # fix random seeds for reproducibility
# SEED = 123
# torch.manual_seed(SEED)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
# np.random.seed(SEED)
# configugations
cfg = GNNWrapper.Config()
cfg.use_cuda = use_cuda
cfg.device = device
cfg.log_interval = args.log_interval
cfg.tensorboard = args.tensorboard
# cfg.batch_size = args.batch_size
# cfg.test_batch_size = args.test_batch_size
# cfg.momentum = args.momentum
cfg.dataset_path = './data'
cfg.epochs = args.epochs
cfg.lrw = args.lr
cfg.activation = nn.Tanh()
cfg.state_transition_hidden_dims = [5,]
cfg.output_function_hidden_dims = [5]
cfg.state_dim = 2
cfg.max_iterations = 50
cfg.convergence_threshold = 0.01
cfg.graph_based = False
cfg.log_interval = 10
cfg.task_type = "semisupervised"
cfg.lrw = 0.001
# model creation
model = SemiSupGNNWrapper(cfg)
# dataset creation
E, N, targets, mask_train, mask_test = dataloader.old_load_karate()
dset = dataloader.from_EN_to_GNN(E, N, targets, aggregation_type="sum", sparse_matrix=True) # generate the dataset
dset.idx_train = mask_train
dset.idx_test = mask_test
model(dset) # dataset initalization into the GNN
# training code
for epoch in range(1, args.epochs + 1):
model.train_step(epoch)
if epoch % 10 == 0:
model.test_step(epoch)
# model.test_step()
# if args.save_model:
# torch.save(model.gnn.state_dict(), "mnist_cnn.pt")
if __name__ == '__main__':
main()
Total running time of the script: ( 0 minutes 0.000 seconds)