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ARTIFICIAL NEURAL NETS AS DATA-FLOW COMPUTATIONAL MODELS

• The processing scheme characterizing Artificial Neural Networks (ANNs) can be conveniently
described as a data-flow through a computational graph G = (V, E).

• Nodes vi ∈ V: input or intermediate variable (neural activations of neurons residing in the same layer)

• Edges ei ∈ E: elementary operations (non-linearities) applied on originating nodes - parametrized by
learnable synaptical weightsW

T

T
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LEARNING IN ANNS AS COMPUTATIONAL GRAPHS

ANNs are trained optimizing an error function of the network predictions with respect to some
target values, V(·), in a two-phase process:

1. Evaluate the derivatives of the error function (Automatic Differentiation - BackPropagation)
with respect to the learnable parametersW

∇WV(·) (1)

2. Adjust the parameters towards values which guarantee an improvement of measured
performances (Gradient Descent)

∆W t+1 = W t − η∇WtV(·) (2)
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AUTOMATIC DIFFERENTIATION - BACKPROPAGATION

T

• Forward phase from the roots (input layer) up to the prediction computation, on the leaves
(output layer)

• Backward Phase message passing scheme to backpropagate the errors, differentiating through
the computational graph (gradients are computed via the chain rule).

• Pros Computationally efficient

• Cons
- High memory consumption to store intermediate values
- Mandatory sequential nature of computation (Non-locality, hardship in achieving parallelization)
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INTUITION: DESCRIBE THE NEURAL ARCHITECTURE BY A MATHEMATICAL SUPERSTRUCTURE

• Learning from Constrains1 Line of research aimed at expressing and injecting external
knowledge onto the domain of the task-at-hand.

• An agent lives and interact with an environment which imposes the fulfillment of constraints

• Contribution Exploit constraints to force internal knowledge onto the structure of the neural
models.

• Decompose neural architectures into local components
• Leverage the mathematical notion of constraint to put into communication such local
substructures

T

1Giorgio Gnecco et al. “Foundations of support constraint machines”. In: Neural computation 27.2 (2015), pp. 388–480.
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INTUITION: FLOW OF INFORMATION AS CONSTRAINT SATISFACTION

• Enrich the learning problem with auxiliary local variables (Lifted Networks)
• Constrain their evolution to follow the neural computational scheme
• Neural architectures will be treated as a collection of local submodules, whose interconnection
and processing scheme is defined by constraints

T

5



CONTRIBUTIONS – LEARNING BY ARCHITECTURAL CONSTRAINTS

This choice allows to setup an optimization procedure that is “local”, i.e. does not require:

1. to query the whole network
2. to accomplish a sequential diffusion of the information
3. to bufferize data streamed over time in order to be able to compute gradients.

constraints describe the dependencies in the neural computation. Hence, the proposed technique
can be summarized by the definition Learning by Constraints

6



CONTRIBUTIONS – LEARNING BY ARCHITECTURAL CONSTRAINTS

The thesis investigates three different learning settings that are instances of the aforementioned
scheme:

1. constraints among layers in feed-forward neural networks2

2. constraints among the states of neighboring nodes in Graph Neural Networks3

3. constraints among predictions over time4.

2G. Marra et al. “Local Propagation in Constraint-based Neural Networks”. In: 2020 International Joint Conference on Neural Networks (IJCNN). 2020,
pp. 1–8. DOI: 10.1109/IJCNN48605.2020.9207043.
3Matteo Tiezzi et al. “A Lagrangian Approach to Information Propagation in Graph Neural Networks”. In: vol. 325. Giacomo, Giuseppe De. IOS Press,
2020, pp. 1539–1546. URL: https://doi.org/10.3233/FAIA200262.
4Matteo Tiezzi et al. “Focus of Attention Improves Information Transfer in Visual Features”. In: Advances in Neural Information Processing Systems 33
(2020).
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FIRST RESEARCH QUESTION

BP has become the de-facto algorithm for training neural networks. The sequential nature of the
performed computation hinders parallelizations capabilities and causes a high memory
consumption.

Is it possible to devise a novel computational method for a generic Directed Acyclic Graph that gets
inspiration and advantages from principles of locality?
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1 – Local Propagation in
Constraint-based Neural Networks



PROBLEM SETTING

We consider the supervised learning problem defined by

• N example pairs: (x0i , yi), i = 1 . . .N;
• An MLP with H hidden layers, denoted by f(W, ·);
• We denote with xℓi the outputs on layer ℓ relative to example i;

• The computational rule associated with the MLP, for the i-th pattern

xℓi = σ(Wℓ−1xℓ−1i ) (3)

• An optimization problem on the loss function V(·).

min
W

N∑
i=1

V(f(W, x0i ), yi),

that is usually solved via
GD+ Backprop
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AN EQUIVALENT PROBLEM

• Cast the learning problem as constrained optimization5.
• Add free variables xi (to be optimized) corresponding to the neural outputs.

Problem

minimize
N∑
i=1

V(f(W, x0i ), yi);

subject to G(xℓi − σ(Wℓ−1xℓ−1i )) = 0, i = 1, . . .N, ℓ = 1, . . . ,H.

With G(0) = 0 (tolerance to noise, improve generalization, stabilize learning).

Enforce the constraint satisfaction: describe the computational scheme and the learning
mechanism – Local Propagation (LP).

5Yann LeCun et al. “A theoretical framework for back-propagation”. In: Proceedings of the 1988 connectionist models summer school. Vol. 1. CMU,
Pittsburgh, Pa: Morgan Kaufmann. 1988, pp. 21–28.
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LAGRANGIAN BASED OPTIMIZATION

We tackle the constrained problem introducing the Lagrangian

L(W, x, λ) :=
N∑
i=1

(
V(xH+1i , yi) +

H∑
ℓ=1

λiℓG(xℓi − σ(Wℓ−1xℓ−1i ))

)

and then looking for saddle point of this function, in a gradient ascent-descent scheme6.

min
W,X

max
Λ

L(W, X,Λ)

6John C Platt and Alan H Barr. “Constrained differential optimization”. In: Neural Information Processing Systems. 1988, pp. 612–621.
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PROPERTIES OF LP

• The gradients of L that appear in the updates rules for W, x and λ can be explicitly calculated
and depend only on local quantities.

• It is parallelizable over the neurons;
• It reproduces GD with backprop when ∂L/∂x = 0, ∂L/∂λ = 0 and G = id.
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LP EXPERIMENTAL RESULTS

• Prove the feasibility and that generalization skills are in-line with BP.
• Show that locality and parallelization do not correspond to a loss in performance w.r.t. BP even
if the problem is lifted with X and Λ.

DATASET EXAMPLES DIMENSIONS CLASSES

Adult 48842 14 2
Ionosphere 351 33 2
Letter 20000 16 26
Pima 768 8 2
Wine 179 13 3
Ozone 2536 72 2
Dermatology 366 34 6
MNIST 70000 784 10

Table 1: Experiments on 7 benchmarks from the UCI repository7 and on the MNIST dataset.

7Dheeru Dua and Efi Karra Taniskidou. UCI Machine Learning Repository. 2017. URL: http://archive.ics.uci.edu/ml.

13

http://archive.ics.uci.edu/ml


LP EXPERIMENTAL RESULTS

Table 2: Performances of the same architectures optimized with BP and LP. Left: H = 1 hidden layer (100 units); right: H = 3 hidden layers (30 units
each). Largest average accuracies are in bold.

BP (H = 1) LP (H = 1) BP (H = 3) LP (H = 3)

Adult 84.66 ±0.00 85.43 ±0.00 84.91 ±0.00 85.34 ±0.00
Iono. 91.48 ±0.57 91.48 ±2.95 92.61 ±0.57 94.60 ±1.86
Letter 94.20 ±0.31 94.94 ±0.05 92.27 ±0.19 90.42 ±0.78
Pima 76.17 ±1.62 77.21 ±2.79 76.56 ±2.42 75.91 ±1.54
Wine 97.16 ±1.88 98.86 ±1.14 97.73 ±2.78 98.86 ±1.97
Ozone 97.04 ±0.26 97.12 ±0.13 97.28 ±0.13 97.20 ±0.17
Derma. 95.60 ±1.74 96.70 ±1.74 97.53 ±1.20 98.63 ±0.48
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Figure 1: Convergence speed of BP and LP in MNIST (left) and Letter (right).
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Figure 2: Accuracies of BP and LP (with ε and lin-ε) on the MNIST data. 15



2 – Lagrangian Propagation Graph
Neural Networks



BACKGROUND: GRAPH STRUCTURED DATA

• Graph G = (V, E), where V is a finite set of nodes and E ⊆ V× V collects the arcs
• li node i features, l(i,j) arc (i, j) features (both optional)
• Structures that allow to represent relationships
• GOAL Learn a mapping f : V→ Y predicting some graph property (at node/graph level)
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MESSAGE PASSING GRAPH NEURAL NETWORKS

Describe several models under a common framework - MPNN8

• Minimal requirements to design a message passing node aggregation function:
• Permutation invariance
• Independent on neighborhood size (1-hop)
• Exploit same aggregation function among the nodes (gain generalization)
• Linear complexity on the Edges

• Layerwise feature extraction fosters message propagation.

MPNN

m(ℓ)
i←j = MSGℓ

(
x(ℓ−1)i , x(ℓ−1)j , li, lj, ai←j

)
x(ℓ)i = UPℓ

( ∑
vj∈N∗

i

m(ℓ)
i←j

)

8Justin Gilmer et al. “Neural message passing for quantum chemistry”. In: arXiv preprint arXiv:1704.01212 (2017).
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GNNS- A TWO PHASES COMPUTATION

• GNN*9 apply a two-phase computation on each graph G = (V, E)
• Encoding (aggregate) phase compute a state vector xv for each node in V by iteratively applying
the state transition function fa

• yields a diffusion mechanism
• executed until convergence of the state representation, i.e. until x(t)n ' x(t−1)n , v ∈ V.
• Corresponds to the computation of the fixed point of fa on the input graph.
• garanteed if fa is a contraction map - Banach Fixed Point Theorem

• Output (readout) phase exploits the final latent representations encoded by the states stored
in each node to compute the model output with the output function fr

9Franco Scarselli et al. “Graph neural networks for ranking web pages”. In: The 2005 IEEE/WIC/ACM International Conference on Web Intelligence
(WI’05). IEEE. 2005, pp. 666–672.
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BACKGROUND: GRAPH NEURAL NETWORKS10

10Franco Scarselli et al. “The graph neural network model”. In: IEEE Transactions on Neural Networks 20.1 (2008), pp. 61–80.
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REACHING EQUILIBRIUM

Figure credit to Scarselli et al.
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GRAPH NEURAL NETWORKS - A CONSTRAINT SATISFACTION VIEW

GNN*

x(t+1)v = fa(x(t)ne[v], lne[v], lv, av←ne[v])

yv = fr(x(T)v )

• Node update is repeated until convergence of the state representation, i.e. until
x(T)v ' x(T−1)v , v ∈ V.

• Pros – Diffusion mechanism involving all the graph, not only a k-hop neighborhood (k layers).
• Cons – Epoch wise ad-hoc iterative convergence and BackProp.
• Hence, fa reaches its fixed point, satisfying the constraint:

∀v ∈ V, xv = fa,v .
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SECOND RESEARCH QUESTION

The seminal Graph Neural Network11 model (GNN*) leverage an iterative convergence mechanism to
compute the fixed-point of the state transition function, in order to allow the information diffusion
among long-range neighborhoods of a graph.

Is it possible to devise a local constraint-based scheme to avoid such costly procedure, maintaining
these powerful aggregation capabilities?

11Scarselli et al., “Graph neural networks for ranking web pages”.
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LAGRANGIAN PROPAGATION GRAPH NEURAL NETWORKS – LP-GNNS

• Avoid the explicit iterative computation of the fixed point for each epoch.
• Cast the learning problem as constrained optimization.
• Add free variables xv (to be optimized) corresponding to the node states.

Problem

min
Θfa ,θfr ,X

∑
v∈S

L(fr(xv), yv)

subject to G(xv − fa,v) = 0, ∀ v ∈ V

With G(0) = 0.

Enforce the constraint satisfaction in order to achieve:

• a new learning mechanism - search for node state representation that fulfill the constraints.
• Diffusion of information inside the graph.
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DEEP LP-GNNS

Model evolution:

• Introduce a set of K states for each node v ∈ V, organized into K layers, {xv,k, k = 0, . . . , K− 1}.
• Node states as additional input to the upper layer state transition function fka.

G(xv,k − fka,v) = 0, ∀ v ∈ V, ∀ k ∈ [0, K− 1]

• Layered structure – increase the representational power (ConvGNN-like)
• At each and every layer, enforce the diffusion through the constraint satisfaction mechanism
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A LAGRANGIAN APPROACH

We tackle the constrained problem introducing the Lagrangian

L(θfa , θfr , X,Λ) =
∑
v∈S

[
L(fr(xv), yv) +

K−1∑
k=0

λkvG (xv − fa,v)
]

and then looking for saddle points of this function, in a gradient ascent-descent scheme12.

min
Θfa ,θfr ,X

max
Λ

L(Θfa , θfr , X,Λ)

12Platt and Barr, “Constrained differential optimization”.
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MOTIVATIONS AND STRENGTHS

• Jointly optimize the model weights and the state representations without the need of separate
ad-hoc optimization stages.

• No more need of the epoch-wise convergence procedure

• Trade-off w.r.t. Local Propagation (LP) – fa and fr are BP-trainable models, the only additional
variable are the node states xv.

• Diffuse information layerwise by gradually enforcing the convergence of the state transition
function to a fixed point (by virtue of the constraints).

• LP-GNNs strictly split deep feature extraction from the diffusion mechanism.
• Our scheme can be plugged into all SOTA models, leveraging powerfull aggregation functions
empowered by diffusion over the graph.
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EXPERIMENTS – SUBGRAPH MATCHING AND CLIQUE DETECTION

Table 3: Accuracies on the artificial datasets, for the proposed model (Lagrangian Propagation GNN - LP-GNN) and the standard GNN model for
different settings.

Model Subgraph Clique

G ϵ Acc(avg) Acc(std) Acc(avg) Acc(std)

LP-GNN

abs
0.00 96.25 0.96 88.80 4.82
0.01 96.30 0.87 88.75 5.03
0.10 95.80 0.85 85.88 4.13

lin
0.00 95.94 0.91 84.61 2.49
0.01 95.94 0.91 85.21 0.54
0.10 95.80 0.85 85.14 2.17

squared - 96.17 1.01 93.07 2.18

GNN - - 95.86 0.64 91.86 1.12
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EXPERIMENTS – GRAPH CLASSIFICATION

Table 4: Average and standard deviation of the classification accuracy on the graph classification benchmarks, evaluated on the test set, for
different GNN models.

Datasets IMDB-B IMDB-M MUTAG PROT. PTC NCI1
# graphs 1000 1500 188 1113 344 4110
# classes 2 3 2 2 2 2
Avg # nodes 19.8 13.0 17.9 39.1 25.5 29.8

DCNN 49.1 33.5 67.0 61.3 56.6 62.6
PATCHYSAN 71.0± 2.2 45.2± 2.8 92.6± 4.2 75.9± 2.8 60.0± 4.8 78.6± 1.9
DGCNN 70.0 47.8 85.8 75.5 58.6 74.4
AWE 74.5± 5.9 51.5± 3.6 87.9± 9.8 – – –
GRAPHSAGE 72.3± 5.3 50.9± 2.2 85.1± 7.6 75.9± 3.2 63.9± 7.7 77.7± 1.5
GIN 75.1± 5.1 52.3± 2.8 89.4± 5.6 76.2± 2.8 64.6± 7.0 82.7± 1.7
GNN 60.9± 5.7 41.1± 3.8 88.8± 11.5 76.4± 4.4 61.2± 8.5 51.5± 2.6
LP-GNN-SINGLE 71.2± 4.7 46.6± 3.7 90.5± 7.0 77.1± 4.3 64.4± 5.9 68.4± 2.1
LP-GNN-MULTI 76.2± 3.2 51.1± 2.1 92.2± 5.6 77.5± 5.2 67.9± 7.2 74.9± 2.4
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ADDITIONAL EXPERIMENTS – STATE EVOLUTION IN FEATURELESS DATA

• Completely removed node-attached features from the Karate Club dataset, in order to exploit
only topological properties.

• No dependence on node features (l0v ), the states are continuous representations of topological
features of the nodes in the graph.
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ADDITIONAL EXPERIMENTS – DEPTH VS DIFFUSION

• GCN-like models need to stack multiple layers to achieve information diffusion.
• Some tasks suffice a shallow representation of the nodes, but still need a diffusion process to
take place.

• LP-GNN naturally model this diffusion, without the need of deep architectures: the diffusion
process is independent of the depth of the network.

Table 5: Average test accuracy on the IMDB-B dataset for LP-GNN and GIN model with state layers K ∈ [1, 5].

Model Number of State Layers
1 2 3 5

GIN13 52 72.6 72.7 75.1
LP-GNN 71.2 73.7 73.9 76.2

13Keyulu Xu et al. “How Powerful are Graph Neural Networks?” In: International Conference on Learning Representations. 2018.
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LATEST FINDINGS – LAGRANGIAN PROPAGATION IN GNNS

• Extend the approach to a wide variety of aggregation functions available in literature
• Adapted the proposed constraint-based scheme to use the aggregation functions of two
popular models, i.e., GIN and GCN.

Table 6: LP diffusion in other GNN models. Average test accuracy on the IMDB-B dataset.

Evaluation Model Number of State Layers
1 2 3 5

Absolute
LP-GNN 65.3 73.7 73.9 76.2
LP-GIN 71.3 73.2 73.0 73.6
LP-GCN 73.4 73.5 73.8 73.7
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3 – Constraint-based Mutual
Information Computation in Salient
Areas of Video Streams



BACKGROUND - UNSUPERVISED LEARNING FROM CONTINUOUS VISUAL STREAM

A challenging problem that requires to go beyond the classic batch-mode setting.

−→

Video Stream Pixelwise Deep-CNN

• InfoMax principle feature learning technique based on the maximization of the transferred
information, in terms of Mutual Information (MI)

• Online Learning Avoid catastrofic forgetting in lifelong visual streams
32



THIRD RESEARCH QUESTION

Unsupervised learning from continuous visual streams is a challenging problem that cannot be
naturally and efficiently managed in the classic batch-mode setting of computation. Hence, the
task of transferring visual information in a truly online setting is hard.

Is it possible to overcome this issues by devising a local temporal method that forces consistency
among predictions over time?
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INTUITION

• MI maximization over time regard entropy approximations yielded at each time instant as
components of the same temporal computational model.

• Temporally local entropy approximations are subcomponents of the overall architecture, put into
relation by soft-constraints

• Enforce a temporal estimate that is not limited to the current frame
• No more need to bufferize data over time

T
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COGNITIVE ACTION LAWS14

Process a stream of video frames t 7→ u(t) by a neural network

• weights and biases at time t are represented by the vector variable w(t).

Learning as a variational problem - find a stationary point of the functional w 7→ Γ(w)

Γ(w) :=
∫ T

0
L(t,w(t), ẇ(t), ẅ(t))dt =

∫ T

0
eθt
(
K(ẅ, ẇ) + Uµa(w(t),u(t))

)
dt (4)

• Kinetic term K enforces temporal regularization;
• Potential term U describes the temporal interaction with the environment (frame u(t))

• Unsupervised Learning – U is a temporally local and causal estimation of the Mutual Information.
• Look for trajectories of the weights t 7→ w(t) ∈ Rn leading to configurations with small potential
energy, U

(
w(t), u(t)

)
≈ 0.

14Alessandro Betti, Marco Gori, and Stefano Melacci. “Learning visual features under motion invariance”. In: Neural Networks 126 (2020), pp. 275–299.
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MUTUAL INFORMATION IN VIDEO STREAMS - SETTING

• Neural architecture processes each frame and yields m pixel-wise predictions (y1, y2, ..., ym)
• Output yi represent the probability of attaching to that pixel the i-th symbol
• Discrete vocabulary composed by m symbols
• Probabilities of the output symbol are conditioned on the actual weight configuration, the processed
pixel and the frame.

X

YI(X,Y)
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MUTUAL INFORMATION IN VIDEO STREAMS - SETTING

Maximize the information transfer between the two random variables X and Y:

• X – associated with the input spatio-temporal probability distribution, with a realization given
by (x := coordinate in the Retina(R), t := temporal instant,u(t) := frame)

• Y – associated with the probability distribution over the output symbols.

X

YI(X,Y)

MI index over the video portion [t1, t2],

I(X, Y;ω; t1, t2) = H(Y;ω; t1, t2)− H(Y|X;ω; t1, t2)
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TEMPORAL ENTROPY OF THE OUTPUT SYMBOLS

We can obtain the entropy of the output symbols between time instants t1 and t2,

H(Y;ω; t1, t2) = −
m∑
j=1

Pj(ω, t1, t2) log Pj(ω, t1, t2) (5)

being P the average output activation on the video portion between time instants t1 and t2,

P(ω, t1, t2) ≡
∫ t2

t1
P(ω, t)dt :=

∫ t2

t1

∫
R
p(ω, x,u(t))µ(x, t)dxdt, (6)

• µ(x, t) is a spatio-temporal density (commonly assumed to be uniform in time and space)
• R is the aforementioned Retina.
• P(ω, t) instantaneous probability of the output symbols computed via the total probability rule

• An exact computation of the probability P would require to bufferize data
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CONSTRAINING PREDICTIONS OVER-TIME

Online process that yields the frame probability predictions as a temporal computational model.

• additional auxiliary local variable s(t), that is used to replace P – a temporal estimate which is
not limited to the current frame.

• L is augmented with the differential soft-constraint

|ṡ(t)− P(w(t), t)|2 (7)

• s(t) enforced to approximate a probability estimate which is not limited to the current frame.
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TEMPORAL DISTRIBUTION

• VAR auxiliary variable to softly enforce a causal (depending only on previous-in-time
quantities) approximation up to time t

• PLA temporal delta distribution peaked at time t – potentially leading to poorly informed
updates

• AVG plain temporal Moving average.
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SPATIAL DISTRIBUTION - FOCUS OF ATTENTION

P(ω, t) :=
∫
R
p(ω, x,u(t))µ(x, t)dxdt, (8)

Are all the input pixels equally important?
□ Common assumption: uniform probability density.
+ Humans discard lot of information when observing a video!
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A MODEL FOR THE FOCUS OF ATTENTION

G-Eymol15 – the attended scanpath trajectory t 7→ a(t) emerges as a gravitational process.
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Distribution µa(x, t) := g(x− a(t)) with different implementations of g:

• Uniform on the whole frame UNI
• Restricted to the focus of attention (FOA or FOAW)

15Dario Zanca, Stefano Melacci, and Marco Gori. “Gravitational laws of focus of attention”. In: IEEE transactions on pattern analysis and machine
intelligence 42.12 (2019), pp. 2983–2995.
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EXPERIMENTS – INFORMATION TRANSFER AND SPATIAL FILTERING

Stream Test UNI FOA FOAW
UNI 0.004 0.144 0.020

SparseMNIST FOA 0.103 0.431 0.229
FOAW 0.144 0.255 0.157

UNI 0.653 0.556 0.745
Carpark FOA 0.678 0.639 0.768

FOAW 0.653 0.601 0.721

UNI 0.339 0.556 0.350
Call FOA 0.430 0.582 0.492

FOAW 0.442 0.566 0.457

Training over one of the spatial distributions UNI, FOA, FOAW, tested measuring the MI index in all the three
density cases UNI, FOA, FOAW (best performing temporal distribution). Filtering on the FOA trajectory improves
the information transfer in all conditions.
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EXPERIMENTS – INFORMATION TRANSFER AND TEMPORAL LOCALITY

Stream Test PLA AVG VAR
UNI 0.006 0.054 0.144

SparseMNIST FOA 0.149 0.321 0.431
FOAW 0.146 0.184 0.255

UNI 0.422 0.556 0.315
Carpark FOA 0.458 0.639 0.326

FOAW 0.489 0.601 0.389

UNI 0.259 0.556 0.369
Call FOA 0.328 0.582 0.459

FOAW 0.368 0.566 0.443

Learning using different temporal distributions, keeping fixed the spatial setting FOA. Preserving the temporal
information (AVG, VAR) leads to the best performances.
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EXPERIMENT – FOA VS RANDOM SCANPATHS

Human-like FOA trajectory has a positive impact transferring information with respect to a random
scanpath (RND), considering different DeepCNNs (S—3 layers, D—7 layers, DL—7 layers and more
features).
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Figure 3: Comparison between models trained on a regular trajectory of the attention and on a random
trajectory (suffix -RND), for architectures S, D, DL. Each bar is about a different training probability density, and
the height of the bar is the test MI index along the regular FOA trajectory.
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CONCLUSIONS – CONTRIBUTIONS

We devise a framework capable to decompose neural architectures into local components.

• Auxiliary variables and the unifying mathematical notion of constraint are leveraged to force
internal knowledge onto the structure of the neural models.

Three different learning settings:

1. constraints among layers in feed-forward neural networks16

2. constraints among the states of neighboring nodes in Graph Neural Networks17

3. constraints among predictions over time18.

16Marra et al., “Local Propagation in Constraint-based Neural Networks”.
17Tiezzi et al., “A Lagrangian Approach to Information Propagation in Graph Neural Networks”.
18Tiezzi et al., “Focus of Attention Improves Information Transfer in Visual Features”.
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ISSUES AND FUTURE RESEARCH DIRECTIONS

LP and LP-GNN:

• Issue Memory complexity (Lifted Networks)
• Solution Reduce the lifted variables or predict the Multipliers via an ANN, using the same
differential learning scheme

• Future works Investigate the parallelization capabilities (LP), alternative optimization schemes

Online MI prediction:

• Issue Is MI a good criteria in order to develop informative features?
• Future works Test the learned features in downstream tasks, immerse the agent in a lifelong
simulated environment
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Thank you for listening!

Local Propagation in Neural Network Learning
by Architectural Constraints

Matteo Tiezzi
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CONSTRAINTS TOLERANCE - G FUNCTION

G(a) = lin-ε(a) := max{a, ε} −max{−a, ε} = ,

G(a) = abs-ε(a) := max{|a| − ε, 0} = .

Table 7: The considered variants of the G function. By introducing ε-insensitive constraint satisfaction, we can inject into our hard-optimization
scheme a controlled amount (i.e. ε) of unsatisfaction tolerance.

lin lin-ε abs abs-ε squared

G(a) a max(a, ε)− max(−a, ε) |a| max(|a| − ε, 0) a2

Unilateral × × ✓ ✓ ✓
ε-insensitive × ✓ × ✓ ×

• Stabilize the learning process
• Improved generalization, injection and tolerance to noise.
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BACKUP SLIDES–LP GRADIENT COMPUTATION

∂L
∂Wℓ

=−
N∑
i=1

(
λℓ+1,i � G′ℓ+1,i � σ′(Wℓxℓ,i)

)
xTℓ,i (9)

∂L
∂xℓ,i

=λℓ,i � G′ℓ,i−WT
ℓ

(
λℓ+1,i �G′ℓ+1,i �σ′(Wℓxℓ,i)

)
(10)

∂L
∂xH,i

=λH,i � G′H,i +WT
H
(
V′(yi, y′i )

)
(11)

∂L
∂λℓ,i

=Gℓ,i (12)

49



BACKUP SLIDES–OTHER ARCHITECTURES

• RNN constraints:
G
(
xtℓ − σ(Wℓ−1xtℓ−1 + Uℓ−1xt−1ℓ )

)
= 0;

• Residual Network constraints:

G
(
xℓ − z(h(xℓ−1) + f(Wℓ−1xℓ−1))

)
= 0.
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SETTING

• Process a lifelong visual stream in a theoretically grounded online setting.
• Analyze the information transfer (Mutual Information index I(X, Y) ) from the input X to the
output Y of a Deep-CNN that performs pixel-wise predictions.

X

YI(X,Y)
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INTRODUCTION TO CALS - LINK WITH STATISTICAL ML

• Classical statistical machine learning - minimize an empirical functional risk based on random
sampling

V(w) = 1
ℓ

ℓ∑
k=1

v(w, xk) (13)

• Online learning – different intuition on the functional risk

V(w(t), t) =
∑
t=1

v(w(t), x(t)) (14)

• We assume there is a trajectory t 7→ u(t) in the pattern space that slides along a continuous
temporal manifold - temporally coherent signal

• Parallel with Lagrangian mechanics, the online functional risk interpreted as a potential
• V
(
w(t),u(t)

)
is referred to as the potential of the system defined by Lagrangian coordinates w

• We look for trajectories of the weights t 7→ w(t) ∈ Rn that possibly lead to configurations with
small potential energy, V

(
w(t),u(t)

)
≈ 0
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SECOND ORDER CALS

We reformulated the problem in terms of the limit of the minima of a family of functionals (Γε)ε>0 (
starting from Γ)19.

• Update rules (ODEs) for the weights of the NN starting from fixed initial conditions on w0, w1 for
the weights and their temporal derivatives, respectively:αẅ(t) + βẇ(t) + kw(t) +∇Uµa(w(t),u(t)) = 0;

w(0) = w0, ẇ(0) = w1.
(15)

• Second order update rules instead of fourth order ODEs as we would have obtained from the
stationarity condition on Γ.

• Full temporal causality – local computational model.

19Matthias Liero and Ulisse Stefanelli. “A new minimum principle for Lagrangian mechanics”. In: Journal of nonlinear science 23.2 (2013), pp. 179–204.
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PARALLELIZATION IN LP

• We exploited ready to use libraries (Tensorflow – Autograd for gradient computation)
• Sequential Forward adn Backward computations of gradient – GPUs benefit by the
parallelization of matrix operation within each layer

• LP goes beyond that – local nature – easy to scale up with data parallelization strategies (many
workers)20

• The ℓ-th computational unit needs to share the memory where some variables are stored with
the (ℓ+ 1)-th and (ℓ− 1)-th units.

• Parallelize computation both on the example dimension i and on the layers ℓ dimension.
• Need an ad-hoc parallel implementation

• Central node computes the global loss function, update the weight and broadcast the updates to the
nodes

20Gavin Taylor et al. “Training neural networks without gradients: A scalable admm approach”. In: International conference on machine learning. 2016,
pp. 2722–2731.
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