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Abstract

A crucial role for the success of the Artificial Neural Networks (ANN) pro-
cessing scheme has been played by the feed-forward propagation of signals.
The input patterns undergo a series of stacked parametrized transformations,
which foster deep feature extraction and an increasing representational power.
Each artificial neural network layer aggregates information from its incoming
connections, projects it to another space, and immediately propagates it to
the next layer.

Since its introduction in the ’80s, BackPropagation (BP) is considered to
be the “de facto” algorithm for training neural nets. The weights associated to
the connections between the network layers are updated due to the backward
pass, that is a straightforward derivation of the chain rule for the computation
of the derivatives in a composition of functions. This computation requires to
store all the intermediate values of the process. Moreover, it implies the use
of non-local information, since the activity of one neuron has the ability to
affect all the subsequent units up to the last output layer.

However, learning in the human brain can be considered a continuous,
life-long and gradual process in which neuron activations fire, leveraging local
information, both in space, e.g neighboring neurons, and time, e.g. previous
states.

Following this principle, this thesis is inspired by the ideas of decoupling
the computational scheme, behind the standard processing of ANNs, in order
to decompose its overall structure into local components. Such local parts
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are put into communication leveraging the unifying notion of “constraint”. In
particular, a set of additional variables are added to the learning problem, in
order to store the information on the status of the constrained neural units.
Therefore, it is possible to describe the computations performed by the net-
work itself guiding the evolution of these auxiliary variables via constraints.
This choice allows us to setup an optimization procedure that is “local”, i.e.,
it does not require (1) to query the whole network, (2) to accomplish the
diffusion of the information, or (3) to bufferize data streamed over time in
order to be able to compute gradients. The thesis investigates three different
learning settings that are instances of the aforementioned scheme: (1) con-
straints among layers in feed-forward neural networks, (2) constraints among
the states of neighboring nodes in Graph Neural Networks, and (3) constraints
among predictions over time.
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Chapter 1

Introduction

A
peculiar characteristic of complex cognitive systems is the ease with which
they are able to face challenging tasks, such as humans do. Recognizing an

object, understanding the dynamics of a scene or disentangling the factors that
identify an item are easy tasks for adult humans, who have been subject to a
gradual process of learning and experience accumulation during their lifetimes.
Even without the explicit definition of rules that a pattern must follow or other
kind of symbolic knowledge, humans are able to classify, recognize and discern
the objects and entities in the environment around them, solely by exploring
and learning from experience.

Developing artificial cognitive models able to even remotely reproduce such
advanced properties is hard. Actually, old-fashioned pattern recognition tech-
niques rely on a careful hand-crafted engineering process, aimed at design-
ing proper feature extractors. The discovery of effective data characteristics,
with the purpose of finding an useful representation to discern the data at
hand, is solely depending on the designer’s experience and predetermined pre-
processing techniques. Notwithstanding, the increasing amount of data and
complexity in most of the practical applications, along with the need of a
good level of generalization to unseen cases, bring a undeniable difficulty in
the design of robust and effective features for complex problems.

The recent success of Deep Learning comes also from its capability of
learning data representations directly from raw data, automatically discov-
ering useful features to represent data for the task at hand (Representation
Learning), while learning a proper predictive model. The previously men-
tioned difficulties in the design of appropriate data characteristics have been
in fact sidestepped by learning the representation itself. Deep Neural Networks
[3] represent the most successful example of this direction. Starting from the
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raw input, many non-linear modules are stacked in layers, each of which trans-
forms its input to a more abstract and complex representation, trained in an
end-to-end fashion. The ubiquity of Deep Learning usages in modern technol-
ogy is evidence of the impressive power of this approach. Autonomous driving
[4], healthcare [5] and medicine [6], intelligent assistants guided by Natural
Language [7], even particle physics [8, 9] and many other fields have been hit
by this novel promising field of research.

The success of Deep Learning can be ascribed also to the user-friendliness
and availability of several Mathematical and Machine Learning frameworks
[10, 11, 12, 13, 14], and the advantages brought by Automatic Differentiation,
i.e. derivative computation exploiting a view of the problem as a compu-
tational graph. These frameworks, and the big tech companies beyond their
development, are playing a key role in the widespread diffusion of Deep Learn-
ing.

At their core, Deep Learning models leverage the computational power
of artificial neural networks, models inspired by previous attempts to find a
mathematical representation of the information processing steps occurring in
biological neurons [15, 16, 17, 18]. Indeed, since their foundations machine
learning and theoretical neuroscience were highly intertwined, often falling
under the same umbrella of Cybernetics [19, 20], which formalized biological
findings (feedforward processes, negative feedback [21]) exploiting mathemat-
ical tools. The Cybernetics view on a common computational framework,
held by both animals and machines, frames perception and control in terms
of probabilistic models and negative feedback, hence using errors as an input
to correct a system.

The computational processing scheme shared by most commonly used ar-
tificial neural networks, is the feed-forward one. Indeed, the network flow of
information can be represented through a directed acyclic (DAG) computa-
tional graph, involving the neural units and the synaptical weights connecting
them, as shown in Figure 1.1.

Given this representation, first a forward flow of information takes place,
processing the input pattern starting from the roots (input layer) and ending
on the leaves (output layer), going through a series of differentiable operations,
giving the final predictions of the network. Learning happens leveraging large
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Figure 1.1: The computational graph definition of Artificial Neural Net-
works.

scale datasets and a procedure that aims at minimizing an error function of
the network’s prediction with respect to the given target output value. The
most commonly used training algorithms share the same pipeline to find a
minimum of the error function, defined by a two-stage process [22]. In the
first one, the derivatives of the error function with respect to the synaptical
weights, the connections among layers, are evaluated. In the latter one, the
derivatives are used to compute the adjustment to the architecture parame-
ters. In this phase, starting from simple techniques such as gradient descent
[23, 24] several powerful optimization schemes have emerged [3]. Going back
to the the first stage, derivatives are computed exploiting Automatic Differ-
entiation. Using the chain rule of calculus, it is possible to undergo a message
passing scheme to propagate the error backward, differentiating through the
computational graph. The instantiation of Automatic Differentiation in ar-
tificial neural networks is known as BackPropagation [25, 26, 23](see Figure
1.2).

T

Figure 1.2: BackPropagation on the computational graph of ANNs exploit-
ing the Chain Rule (in red).

Consequently, in BackPropagation the activation of each unit affects all the
descendant neurons in the computational graph. Hence, the weight updates
are non-local and rely on upstream layers. The downside of these solutions
are high memory consumption, to store intermediate values, and the need to
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obey to the aforementioned sequential nature of computations.

1.1 Motivations

Despite the previously highlighted promising characteristics, the ability of the
human cognitive system is still far away in many aspects. Deep Neural Net-
works still lack in term of conceptual abstraction, causal or relational reasoning
as long as many other characteristics of intelligent behaviour.

However, whilst the study of human neurological patterns can foster ad-
vances in the computational processes behind artificial intelligence and neural
networks, the actual success of deep learning is a direct consequence of math-
ematical solutions. Indeed, the chance to develop a mathematical superstruc-
ture, inspired by intuitions similar to the biological ones, could be capable to
grasp the underlying laws of the cognitive processes guiding human-like intel-
ligence. This direction could leverage the advances in computational systems
modeling and, likewise, it could be prone to the injection of interesting and
beneficial solutions or shortcuts.

Following the previously presented principles, this dissertation is inspired
by a recent line of research that describes learning using the unifying math-
ematical notion of “constraint” [27, 28]. This line of research lays the foun-
dations for a comprehensive theory for the design of intelligent agents, giving
a broader view of learning. In particular, the intuition comes from the con-
sideration that just like humans, intelligent agents live and interact with an
environment that imposes the fulfillment of several constraints. Therefore, it
is possible to build a computational model of learning based on this mathe-
matical notion. This approach foster the model ability to process higher level
concepts, and in particular to handle the injection of external knowledge on
the domain of the task-at-hand.

Complex environments can be modeled as a set of constraints, which the
agent is expected to satisfy. As introduced in [29] and then systematically
studied in [30], the theory of Learning from constraints takes inspiration from
principles of cognitive development and stage-based learning. An agent goes
through a first training stage considering only the supervised examples, i.e.
sub-symbolic information provided as an input to ouput point–wise constraint.
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Figure 1.3: The decomposition of the computational graph into local com-
ponents, connected via constraints.

In this way, the agent is expected to develop some kind of abstract and higher
level cognitive capabilities, following a completely data–driven mechanism.
Hence, in principle the agent could be capable to process more abstract and
symbolic knowledge, injected into the models through a semantic-based reg-
ularization, in the form of constraints to be fulfilled. The symbolic prior
knowledge injected in the second stage via constraints is generally represented
by logic clauses [31, 30].

The unifying concept of constraint is broadly general and able to manipu-
late various kinds of knowledge in different tasks and contexts. For instance,
they have been used to enforce the probabilistic normalization when learning
density distributions or functions modeling a classification task [32], or to im-
pose consistency of the classifier outputs either in the case of different views
of the same object [33] or in the case of correlations in time [34]. As it become
clear from these examples, all these methods leverage constraints in order to
incorporate domain knowledge into the neural models.

The contributions, presented in this thesis, explore a novel path in the
direction of learning via the unifying mathematical notion of constraints. The
main intuition is the ability to decompose the neural architectures into local
components, i.e. subparts constituting the overall architecture, as depicted in
Figure 1.3.

Rather than leveraging the constraints to express and inject external knowl-
edge onto the domain of the task-at-hand, the intuition is to exploit constraints
to force internal knowledge onto the structure of the neural models. The
learning problem is enriched with auxiliary local variables whose evolution is
constrained to follow the neural computational scheme. Thus, constraints are
the mathematical tool leveraged to put into communication the obtained lo-
cal structures. In other words, the computation performed by the network is
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partially described by structural constraints.
This choice allows us to setup an optimization procedure that is “local”,

i.e., it does not require (1) to query the whole network, (2) to accomplish the
diffusion of the information, or (3) to bufferize data streamed over time in
order to be able to compute gradients.

Learning is the outcome of the interaction of data and constraints, that
describe the dependencies in the neural computation. Hence, the proposed
technique can be summarized by the definition Learning by Constraints.

1.2 Research questions and contributions

In the following Chapters, given the background overview seen so far, the thesis
will explore three different learning settings, seeking to answer the following
research questions. These questions are not intended to be self-contained and
are characterized by concepts that will be expanded in the next chapters.

In particular, three different learning settings that are instances of the
aforementioned scheme will be investigated: (1) constraints among layers in
feed-forward neural networks, (2) constraints among the states of neighboring
nodes in Graph Neural Networks (GNNs), (3) constraints among predictions
over time.

1. BackPropagation has become the de-facto algorithm for training neural
networks. Despite its success, the sequential nature of the performed
computation hinders parallelizations capabilities and causes a high mem-
ory consumption. Is it possible to devise a novel computational method
for a generic Directed Acyclic Graph that gets inspiration and advantages
from principles of locality?

Constraint-based Neural Networks In the proposed approach, Local
Propagation, DAGs can be decomposed into local components. The pro-
cessing scheme of neural architecture is enriched with auxiliary variables
corresponding to the neural units, and therefore can be regarded as a set
of constraints that correspond with the neural equations. Constraints
enforce and encode the message passing scheme among neural units, and
in particular the consistency between the input and the output variables
by means of the corresponding weights of the synaptic connections. The
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proposed scheme leverages completely local update rules, revealing the
opportunity to parallelize the computation.

2. The seminal Graph Neural Networks [35] model uses an iterative con-
vergence mechanism to compute the fixed-point of the state transition
function, in order to allow the information diffusion among long-range
neighborhoods of a graph. Is it possible to avoid such costly procedure
maintaining these powerful aggregation capabilities?

Constraining the Information Diffusion in Graph Neural Net-
works The original GNN model[35] encode the state of the nodes of
the graph by means of an iterative diffusion procedure that, during the
learning stage, must be computed at every epoch, until the fixed point
of a learnable state transition function is reached, propagating the infor-
mation among the neighbouring nodes. Lagrangian Propagation GNNs
decompose this costly operation, proposing a novel approach to learning
in GNNs, based on constrained optimization in the Lagrangian frame-
work. Learning both the transition function and the node states is the
outcome of a joint process, in which the state convergence procedure
is implicitly expressed by a constraint satisfaction mechanism, avoiding
iterative epoch-wise procedures and the network unfolding.

3. Unsupervised learning from continuous visual streams is a challenging
problem that cannot be naturally and efficiently managed in the clas-
sic batch-mode setting of computation. Lifelong learning suffers from
the problem of catastrophic forgetting [36]. Hence, the task of transfer-
ring visual information in a truly online setting is hard. Is it possible
to overcome this issue by devising a local temporal method that forces
consistency among predictions over time?

Constraint-based Mutual Information Computation in Salient
Areas of Video Streams We consider the problem of transferring in-
formation from an input visual stream to the output space of a neural
architecture that performs pixel-wise predictions. This problem consists
in maximizing the Mutual Information (MI) index. Most approaches
of learning commonly assume uniform probability density of the input.
Actually, devising an appropriate spatio-temporal distribution of the vi-
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sual data can foster the information transfer. In the proposed approach,
a human-like focus of attention model takes care of filtering the spa-
tial component of the visual information, restricting the analysis on the
salient areas. On the other side, various temporal locality criteria can
be explored. In particular, the analysis sweeps over the probability es-
timates obtained in subsequent time instants. Global changes in the
entropy of the output space are approximated by introducing a specific
constraint. The probability predictions obtained at each time instant
can once more be regarded as local components, that are put into rela-
tion by soft-constraints enforcing a temporal estimate not limited to the
current frame.

To sum up, the proposed scheme decomposes neural architectures into lo-
cal subparts, i.e. neural network neurons (or layers), node states updates in
graphs, or time instant predictions, obtained via the introduction of local aux-
iliary variables. Constraints are the mathematical tool leveraged to put into
communication these components, connecting units, aggregating neighboring
nodes in graphs, forcing temporal entropy predictions, respectively.

In such a way, several advantages like parallelization and locality of com-
putations are obtained, besides the ability to avoid costly procedures without
sacrificing representational capabilities.

1.3 Thesis structure

In the following Chapters the thesis will try to answer the research questions
described in Section 1.2, preceded by a general description of the theoretical
foundations.

1. Chapter 2 gives a broad introduction to all the concepts this disser-
tation is based on. Some insight on artificial neural architectures are
followed by an introduction to optimization schemes, with a focus on
BackPropagation. Moreover, we recall some backgrounds of a theoret-
ical framework for BackPropagation, as long as constrained differential
optimization based on the Lagrangian Framework. This principles will
establish the foundation for the following Chapters.
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Chapter 2

Neural Network Architecture as Constraints

In the context of Deep Learning, artificial neural architectures are charac-
terized by a computational structure that can be generally decomposed into
local subcomponents, at different granularity levels. The atomic computa-
tional component is the neuron itself, but, at a coarse grain level, appropriate
aggregations of neural units, such as layers, can be considered as building
blocks of a complex architecture. The idea is to describe the interactions of
these blocks thanks to the introduction of local auxiliary variables and the
mathematical tool of constraint, which is leveraged in order to define and de-
scribe the connections among such submodules. This intuition imply several
advantages, allowing to express a local processing scheme in several archi-
tectures (Chapter 3), to avoid costly iterative procedures (Chapter 4) or to
better estimate certain temporal quantities (Chapter 5). The backbone of this
approach is the ability to describe the flow of information happening inside
computational models by means of constraints.

In this Chapter we will establish a common notational framework, provide
the necessary background and give a comprehensive overview of the needed
background methods. In what follows, we will give an introduction to several
Artificial Neural Networks (ANNs) in Section 2.1 and the learning procedure
commonly used in ANNs in Section 2.2. Afterward, a brief introduction on
the Lagrangian formalism for constrained Optimization will be given in Sec-
tion 2.4, followed by the description of methods to carry on optimization in
this context in Section 2.6, and by insights on a Lagrangian derivation of
BackPropagation in Section 2.5.
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2.1 Artificial Neural Architectures

Artificial Neural networks (ANN) are machine learning models born as a
byproduct of studies on the information processes happening in biological neu-
rons [15, 16, 17, 18]. At their core, they are composed of simple interconnected
processing units known as artificial neurons, connected by synaptic weights,
which are commonly denoted with the symbol w and represent learnable pa-
rameters defining the overall computation. The final goal is the approximation
of some function of the input x, a mapping y = f(x;w), where the param-
eters w are learned in order to achieve the best input to output fitting on a
set of given examples. Such mapping is obtained via the composition of many
simple functions, defined by each artificial neuron. The overall computation
emerges from the flow of information in the network of neurons, given the pat-
tern of connections between them and the synaptic weights assigned to such
connections.

Generally speaking, the flow of information happening inside ANNs can be
described in terms of a computational graph G = (V,E), a Directed Acyclic
Graph that describes any program or computable function as a composition
of elementary functions. The computation consists in a data flow through
the edges E, undergoing several subsequent numerical transformations. Each
node v ∈ V represents an input (scalar, vector, matrix, tensor, etc.) or an
intermediate variable (neural activation) obtained by applying elementary op-
erations (e.g. non-linearities, tensor multiplications) to the values available at
another node connected to v by an arc e ∈ E. A set of neurons residing at the
same depth – layer – of the data-flow are denoted by the same node vi (see
top of Figure 2.1). Multi-layered (“deep”) neural networks are graphs having
more than two of such layers.

Several neural architectures have been developed in order to deal with
different tasks. In the following, we will briefly review the main models that
will be used in the dissertation.

2.1.1 Multi-Layer Perceptrons

MLPs represent a powerful instance of the previously mentioned computa-
tional DAG, as depicted in Figure 2.1. In particular, it is a directed feed-
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Figure 2.1: Instance of the computational graph (top) as a Multi–Layer
Perceptron (bottom). A set of neurons at the same depth – layer – of the
data-flow are denoted by the same node vi. To ease the plot comprehension,
we depict an MLP with sparse connections among neurons.

forward data-flow graph. Each artificial neuron receives an input vector x ∈
Rn, which may be a task related fixed-size external input or the intermedi-
ate outputs of the set of neurons in the parent nodes of the computational
graph. Given this vector, the neuron computes a linear combination of its
components parametrized by a weight vector w ∈ Rn and it finally adds a bias
value b. This procedure computes the so called neural activation, on which
an activation function σ(·) can be applied, in order to obtain the unit output
y ∈ R :

y = σ(

n∑︂
i=1

wixi + b) = σ(WxT ) (2.1)

where W and x collect the connection weights and the input variables,
respectively, including also the bias in W in correspondence to an additional
input entry in x set to a constant value of 1.

MLPs assume a feedforward structure in which several neural units sharing
the same input compose a layer, and several of such layers are stacked, yielding
the overall architecture. The term “feedforward” refers to the fact that data
flow in the same direction, processed in a synchronous way, starting from the
input layer up to the output layer, through the hidden layers. In general
each unit populating a layer is connected to all the neural units composing
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the following one, in a fully-connected topology. Given a vectorial form of the
input signal x0, where the subscript denotes the layer index, the computational
graph can be translated into a series of dense matrix multiplications, regarded
as matrix form of the computation. The output of a generic hidden layer
ℓ ∈ [1, H] is indicated with xℓ, that is a column vector with a number of
components equal to the number of hidden units in such layer. We also have
that

xℓ = σ(Wℓ−1xℓ−1) (2.2)

where σ(·) is the activation function that is intended to operate element-
wise on its vectorial argument (we assume that this property holds in all the
following functions). The matrix Wℓ−1 collects the weights linking layer ℓ− 1

to ℓ. We avoid introducing bias terms in the argument of σ(·), to simplify the
notation (they can be included in the considered variables as stated before).

Activation functions

In literature, several activation functions σ(·) have been introduced. This
dissertation exploits the following mappings, depicted in Figure 2.2:

• Logistic Sigmoid – A Monotonic continously differentiable mapping
from R to [0, 1]

σ(a) =
1

1 + e−a
(2.3)

• Hyperbolic Tangent – A Sigmoidal shape mapping from R to [−1, 1]

σ(a) = tanh(a) (2.4)

• Rectified Linear – A mapping defined as the positive part of its argu-
ment

σ(a) = max(0, a) (2.5)

2.1.2 Recurrent Neural Networks

Whilst MLPs are designed to process fixed sized inputs, several problems
require an architecture able to handle streams of data, potentially having
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Figure 2.2: The mapping defined by the Sigmoid, Hyperbolic Tangent (Tanh)
and Rectified Linear Unit (ReLU) activation functions.

variable-length. The main idea behind Recurrent Neural Networks (RNNs)
[41, 42] is to extend neural networks to sequentially structured data, by gener-
ating a dynamic computational graph capable to unroll on the length of each
individual input sequence. The unfolding of the computational graph allows
us to compute a hidden representation for each time step, i.e. node, based on
the current input and the node’s previous state.

Formally speaking, given an input sequence
Ä
x
(0)
0 , x

(1)
0 , .., x

(T )
0

ä
composed

by T steps, x
(i)
0 denotes the input at the i-th time step. A layered RNN

computes the state vector for layer ℓ at time step t as:

x
(t)
ℓ = σ(Wℓ−1x

(t)
ℓ−1 + Uℓx

(t−1)
ℓ ) (2.6)

where Uℓ is the matrix of the weights that tune the contribution of the
state at the previous time step. The initial state x

(0)
ℓ is generally set to zero.

As can be seen from Eq. (2.6), this model exploits a temporal weight sharing,
meaning that the same learnable parameters are exploited at the different time
steps.

2.1.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [43] are feed-forward architectures
exploiting peculiar operations in one or more sub-parts of the computational
graph, in particular convolution and pooling.

The main reason behind the introduction of the convolution operation is
the ability to apply the same parametrized function - called kernel - to dif-
ferent areas of the input, in order (1) to deal with high dimensional data
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Figure 2.3: 2D convolution of an input tensor I and a kernel K (Figure
thanks to Petar Veličković).

and (2) to extract common patterns from heterogeneous locations of the in-
put raster. Indeed, processing an input signal (e.g. an image) encoded by
a tensor of dimension c × h × w (number of channels, height and width of
the image, respectively) is an expensive task for a common MLP, requiring
full connectivity between each pixel (input element) and every hidden unit,
resulting in a complexity of O(c × h × w) for each hidden unit. Moreover, a
fully connected network will be needed to learn translation invariance from
the examples, whereas the convolution operation can guarantee this property
a priori. In fact, thanks to the kernel sharing property, convolutional layers are
equivariant to translation, practically meaning that they are able to produce
the same output when detecting the same pattern in different locations.

In the simplest case the convolution operation can be defined for an 1-
dimensional vector input x0 ∈ Rn. In this case, the convolutional kernel is a
vector K ∈ Rk of learnable parameters, where k < n, that slides along the
input with a given stride. At each position, the kernel is multiplied element-
wise with the k input components around the current element, then summed
up producing an aggregated scalar value. The newly obtained values com-
pose a feature map. Generally, many Kernels slide over the same locations,
obtaining an output composed by many channels. This same concept can
be easily extended to multi-dimensional tensors, for instance an input image
X ∈ Rc×h×w[43]. See Figure 2.3 for a graphical representation. Typically,
non-linearities are applied after convolutional layers.
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Another relevant component of CNNs are Pooling layers, that aggregate
(summing up, averaging or extracting the maximum) the values computed by
the convolution filters in small sub-regions (e.g. 2 × 2) of the input feature
map to yield a single output. Pooling performs a sub-sampling in the feature
maps and, hence, helps reducing the potentially redundant information and
the memory consumption, allowing to increase the channel size to obtain a
higher representational power in higher level features. Moreover, by pooling
the CNN gains the property of translation invariance to small displacements
that is useful if we care more about the presence of some features rather than
their exact location.

Residual Networks

With very deep neural networks the increased representational power comes
at the cost of a higher difficulty in the training procedures. Indeed, stacking
many layers of computation interleaved with sigmoidal activation functions
σ(·), hinders the backpropagation of error signals, as we will see in Section
2.2, a problem known with the term vanishing gradient.

ResNets [44] consist of several stacked residual units, that are robust with
respect to the vanishing gradient problem. In particular, this solution has
been shown to attain state-of-the art results in Deep Convolutional Neural
Nets [44] (without being limited to such networks).

The most generic structure of a residual network [45] is defined by layers
whose outputs are computed by

xℓ = z(h(xℓ−1) + f(Wℓ−1xℓ−1)) . (2.7)

In [44], z(·) corresponds to a rectifier (ReLu) and h(·) is the identity function,
while f(·) is a non-linear function. The role of the residual or skip connection
is to create an alternative path, a shortcut h(xℓ−1), for the flow of information
coming from the previous layer. In this way, this information can directly be
propagated, whereas the role of the current layer becomes to solely learn a
residual function f(Wℓ−1xℓ−1).
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2.1.4 Graph Neural Networks

The architectures described in the previous sections have been devised to
extend the representation capability of ANNs beyond flat vectors of features.
Recurrent Neural Networks [41, 42] have been proposed to process sequences,
Convolutional Neural Networks to deal with groups of adjacent pixels [46].

However, several tasks require to deal with data that exhibit a complex
structure, for instance data can be provided as entities and relations among
them. Such data can generally be represented by a graph G = (V,E), where V
is a finite set of nodes and E ⊆ V × V collects the arcs, representing relations
between an ordered pair of nodes (i, j) ∈ V × V .

Several attempts were made to deal with such Non-Euclidean structures
[47], also restricting the problem domain to directed acyclic graphs (Recursive
Neural Networks [48, 49]).

The term Graph Neural Network (GNN) refers to a general computational
model, that exploits the inference and learning schemes of neural networks
to process non Euclidean data, organized as graph structures. GNNs, with a
procedure that resembles Recursive networks, dynamically unfold their com-
putational graph on the topology of the whole input structure. They are able
to take into account both the local information attached to each node and the
whole graph topology. GNNs can implement either a node-focused function,
where an output is produced for each node of the input graph, or a graph-
focused function, where the representations of all the nodes are aggregated to
yield a single output for the whole input graph.

Message Passing Neural Networks

Inspired by the original model [35], Graph Representation Learning is becom-
ing one of the hottest topic in Deep Learning, thanks to hundreds of works
in this direction. The work by Gilmer [50, 51] is an effort to unify this entire
movement under the common framework of Message Passing NNs (MPNNs).
Each node i is characterized by an initial set of features, denoted by li (label
in the original model). The same holds for an arc connecting node i and j,
whose feature, if available, is denoted with l(i,j). Each node i has an associated
hidden representation (or state) xi ∈ Rs, which in modern models is initialized
with the initial features, xi = li. Such state is updated through a message
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passing scheme among neighboring nodes, denoted by Ni or ne[i], followed
by an aggregation of the exchanged information, to obtain the updated node
representation x

(t+1)
i :

x
(t)
(i,j) = MSGt(x(t)i , x

(t)
j , l(i,j)) (2.8)

x
(t+1)
i = AGGt(x(t)i ,

∑︂
j∈Ni

x
(t)
(i,j), li) (2.9)

where x(i,j) is an explicit edge representation, i.e. the exchanged message,
computed by a learnable mapping MSGt(·). The mapping AGGt(·) aggregates the
messages from incoming edges to node i, exploiting also local node informa-
tion (state and features). The functions MSGt(·) and AGGt(·) are typically im-
plemented via MLPs, whose parameters (weights) are learned from data, and
shared among nodes in order to gain generalization capability and save mem-
ory consumption. Generally these two functions are not shared between mes-
sage passing steps, hence MSGt(·) denotes the message function implemented
at time step t. This choice entails both a higher representational capability
and an increased memory and computational complexity in the prediction.
Such steps are commonly referred to as layers, hence an ℓ-step message pass-
ing scheme can be seen as a ℓ-layered graph network. Having ℓ-layers, such
model is able to directly propagate a message up-to an ℓ-hop distance. The
representation of each node at the top layer represents the node-level output
of the GNN.

The Graph Neural Network Model

For the purpose of this dissertation we focus our attention on the seminal
model by Scarselli et al. [35], which can be seen as a particular instantiation
of MPNNs with peculiar characteristics. The node states xi ∈ Rs are an ad-
ditional variable to the problem, independent from the node initial features
li ∈ Rm. The node states are zero-initialized, and the node state update func-
tion, denoted with the term state transition function fa(·), is conditioned on
neighboring states xj with j ∈ Ni and local node features. As described from
the MPNNs guidelines, the state of node i is the outcome of the iterative ap-
plication of the shared state transition function computation, which processes
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Method Implementation of fa(·)

Sum f
(SUM)
a,v =

∑︁
u∈ne[v] h(xu, lu, lv, l(u,v) | θh)

Average f
(AVG)
a,v = 1

|ne[v]|
∑︁

u∈ne[v] h(xu, lu, lv, l(u,v) | θh)

Table 2.1: Common implementations of the state transition function fa().
The function h() is implemented by a feedforward neural network with s out-
puts, whose input is the concatenation of its arguments.

information attached to each node and to its neighborhood. However, dif-
ferently from layered -MPNNs, in this case the same state transition function
is used for every node and for every iteration or aggregation step. The final
purpose is the computation of a vector embedding for each node

x(t+1)
v = fa(x

(t)
ne[v], lne[v], lv, l(ne[v],v)|θfa) (2.10)

where ne[v] are the neighbors of v and lv, lne[v] ∈ Rm, l(ne[v],v) ∈ Rd en-
code additional information (sometimes referred as labels) on the node v, on
its neighbors and on the arcs connecting them. The vectors θfa collect the
function parameters (i.e. the weights of the neural networks implementing the
functions) that are adapted by the learning procedure.

It should be noted that the state transition function fa(·) may depend on
a variable number of inputs, given that the nodes v ∈ V may have different
degrees de[v] = |ne[v]|. It is for this reason that the authors proposed the
implementations reported in Table 2.1 and represented in Figure 2.4, that
inspired the arc-level message passing scheme of MPNNs.

The h(·) function, commonly implemented by an MLP, acts at arc-level
receiving as input the concatenation of its arguments (for example, in the first
case the input consists of a vector of s+ 2m+ d entries, with l(u,v) ∈ Rd and
lu ∈ Rm). The plain aggregation of the arc-level messages yields the node
state at the current iteration. Another interesting property of such functions
is the invariance with respect to permutations of the nodes in ne[v], unless
some predefined ordering is given for the neighbors of each node.
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Once the state transition function application has been iterated T times,
GNNs employ a readout output function, whose nature depends on the task
at hand, by leveraging the final node states x

(T )
i , as

yv = fr
Ä
x(T )
v | θfr

ä
, (2.11a)

yG = fr
Ä
{x(T )

v , v ∈ V } | θfr
ä
, (2.11b)

where yv is the node level output in the node-focused case, whereas yG is
the graph level output in the graph-focused case. The vectors θfr collect the
weights of the neural networks implementing the readout function. The state
transition function fa(·) is recursively applied on the graph nodes, yielding
an information diffusion mechanism whose range depends on T . In fact, by
stacking t times the aggregation of 1-hop neighborhoods by fa(·), a node is
able to directly receive messages coming from nodes that are distant at most
t-hops.

To draw a parallel with MPNNs, the number t may be seen as the depth
of the GNN and thus each iteration can be considered a different layer of
the GNN. In this case, however, all the layers (i.e., iterations) share the same
fa(·). Furthermore, this same function is computed leveraging at each time
step the initial node features, potentially avoiding oversmoothing or washing
away node feature information [52].

Given these considerations, a sufficient number of layers seems the key to
produce a node state informed of the whole graph topology. In the original
GNN model [53], Eq. (2.10) is iterated until convergence of the state repre-
sentation, i.e. until x(t)v ≃ x

(t−1)
v , ∀v ∈ V . This scheme corresponds to the

computation of the fixed point of the state transition function fa(·) on the
input graph. As stated by the Banach fixed-point theorem, in order to guar-
antee the convergence of this phase, the transition function is required to be
a contraction map [54].

2.2 Learning by BackPropagation

Deep Neural Nets are usually trained leveraging a procedure that aims at op-
timizing a differentiable loss function, denoted by V (·), which gives a measure
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Figure 2.4: The Graph Neural Network model.

of how good are the prediction capabilities of the current model.
As briefly mentioned in Chapter 1, the common training pipeline is com-

posed by a two-stage process aiming at the optimization of the loss function
[22]. In the former phase the derivatives of the error function with respect
to the weights, which we denote with ∇wV , are evaluated. In the latter
phase, advanced optimization schemes, inspired by gradient descent [23, 24],
are employed to adjust the network parameters towards values yielding an
improvement of the performances [3].

The first stage of this process, i.e. the parameters derivative computa-
tion, leverages Automatic Differentiation techniques and the data-flow com-
putational model of ANNs presented in Section 2.1. The instantiation of
Automatic Differentiation in neural networks is known as BackPropagation
[25, 26, 23], which has become the "de-facto" standard to compute derivatives
(as sketeched in Figure 2.5).
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T

Figure 2.5: BackPropagation on a generic computational graph exploiting
the Chain Rule (in red).

In the following, without any loss of generality, we will show the derivation
of the BackPropagation algorithm (BP) in a supervised setting, where we are
given N supervised pairs (x0,i, yi), i = 1, . . . , N , where x0,i and yi denote
the input features and the target values of the i-th example, respectively.
Moreover, we consider a Multi Layer Perceptron (MLP) with H hidden layers
as an instantiation of a generic neural architecture described by a Directed
Acyclic Graph (DAG), following the notation introduced in Section 2.1.

If we denote the prediction of the model for the pattern i with with y′i =

σ(WHxH,i), the function V (yi, y
′
i) computes the loss on the i-th supervised

pair, and, when summed up for all the N pairs, it yields the objective function
that is minimized by the learning algorithm. In the case of classic neural
networks, the variables involved in the optimization are the weights Wℓ, ∀ℓ.

Without any loss of generality, we will refer to the Squared Error cost
function:

VSE =
1

2

N∑︂
i=1

(yi − y′i)
2 (2.12)

The goal is the computation of the derivative of the loss function with
respect to the weights. Firstly, we consider the evaluation of the loss function
derivative with respect to the weight matrix WH , collecting the weights linking
layer H to the output layer, which will be denoted as H + 1.

∂V

∂WH
=

N∑︂
i=1

∂(12(yi − y′i)
2)

∂WH
= −

N∑︂
i=1

(yi − y′i)
∂y′i
∂WH

(2.13)
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The last term can be computed exploiting the chain rule

∂y′i
∂WH

=
∂σ(WHxH)

∂WH
=

∂σ(WHxH,i)

∂WHxH,i

∂WHxH,i

∂WH
= σ′(WHxH,i)x

T
H,i (2.14)

Hence, we obtain

∂V

∂WH
= −

N∑︂
i=1

(yi − y′i)σ
′(WHxH,i)x

T
H,i (2.15)

We introduce the notation

δH+1 = (yi − y′i)σ
′(WHxH,i) (2.16)

where δi are commonly referred to as errors. Substituting it into Eq.
(2.15), we obtain

∂V

∂WH
= −

N∑︂
i=1

δH+1x
T
H,i (2.17)

Subsequently, we evaluate the derivative of the loss function with respect
to the weights of the underneath layer, WH−1, obtaining:

∂V

∂WH−1
=

N∑︂
i=1

∂(12(yi − y′i)
2)

∂WH−1
= −

N∑︂
i=1

(yi − y′i)
∂y′i

∂WH−1
(2.18)

We evaluate the derivative of the last term using once again the chain rule

∂y′i
∂WH−1

=
∂σ(WHxH,i)

∂WHxH,i

∂WHxH,i

∂WH−1,i
= σ′(WHxH,i)W

T
H ⊙

∂xH,i

∂WH−1,i
(2.19)

where, exploiting one last time the chain rule:

∂xH,i

∂WH−1,i
=

∂σ(WH−1xH−1,i)

∂WH−1,i
=

∂σ(WH−1xH−1,i)

∂WH−1xH−1,i

∂WH−1xH−1,i

∂WH−1
=

= σ′(WH−1xH−1,i)x
T
H−1,i
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Substituting into Eq. (2.18) we obtain

−
N∑︂
i=1

(yi − y′i)σ
′(WHxH,i)W

T
H ⊙ σ′(WH−1xH−1,i)x

T
H−1 (2.20)

Leveraging Eq. (2.16) we define the error of the current layer as

δH = (δH+1W
T
H)⊙ σ′(WH−1xH−1,i) (2.21)

and finally we get, substituting into Eq. (2.20)

∂V

∂WH−1
= −

N∑︂
i=1

δHxTH−1 (2.22)

This results can be generalized to the derivative computation of a generic
layer ℓ :

∂V

∂Wℓ−1
= −

N∑︂
i=1

δℓ,i · xTℓ−1,i,

δℓ,i = σ′(Wℓ−1xℓ−1,i)⊙
Ä
W T

ℓ δℓ+1,i

ä
,

(2.23)

that are the popular equations for updating weights and the Backpropa-
gation deltas.

From Eq. (2.23) it is quite clear the dependence of the BP algorithm on the
sequential nature of the computations. The weight derivatives are obtained
thanks to the backward propagation of the errors δi from the uppermost layers.
In order to compute the derivatives of the loss function with respect to the
early layers weights, it is necessary to backpropagate the errors through all
the subsequent layers. Thus, in this sense BP is a Non-local algorithm.

The derivatives of the network parameters are exploited into the second
stage of the learning process mentioned at the beginning of this section, the
update of the network parameters. Techniques such as Stochastic Gradient
Descent (SGD) operate in learning epochs. In each of them, firstly a mini-
batch, a subset of training examples, is used to evaluate the loss function
and then compute all the weight gradients through BP. Afterwards, the model
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parameters are updated moving towards the minima of the loss function, along
the direction of the descent of the gradient :

∆Wt+1 = Wt − η∇WtV (·) (2.24)

where η denotes the update pace or learning rate [22].

2.2.1 Learning in Structured Networks

The end-to-end differentiation capability characterizing the BackPropagation
algorithm fosters its application to several kinds of architectures and meth-
ods. While the CNNs data-flow can be simply translated into a feed-forward
one and directly dealt with by an extension of BP, that takes into account
the propagation of the errors through the pooling operator, the application
to structured dynamical architectures such as RNNs or GNNs is not straight-
forward. In the context of recurrent structures, the recursive definition of
the update equation introduces loops into the network computational graph,
that is in practice unrolled in time along the input sequential structure to be
processed. This method allows us to define the BackPropagation Through
Time (BPTT) algorithm [18]. The recurrent layer is unfolded many times as
the number of time steps to be processed, with each step sharing the same
parameters. For this reason, the total gradient is given by accumulating of
the gradients computed at each time step.

The same consideration holds for the GNN model [35], whose convergence
procedure up to the fixed point of the state transition function shares a dy-
namical unrolling procedure similar to that of RNNs, backpropagating the
gradient errors on the GNN unfolded following the graph topology. For this
reason this model in recent surveys falls under the umbrella of Recurrent GNNs
(RecGNNs).

One interesting consideration in the context of learning in very deep net-
works via BackPropagation is the vanishing gradient problem. Applying recur-
rent architectures to long sequences implies the creation of very deep unrolled
networks. When using BPTT, due to the usage of the chain rule and Eq.
(2.23), the computation of the gradients at a given time step depends on the
propagation of the error through all the subsequent steps, that implies the
multiplication by the network output derivative at each step. The usage of
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non-linearities, whose output belongs to a limited range (0, 1) with a satu-
rating behaviour, such as the sigmoid, results in the product of many small
values, that causes a quick decay of the error signal towards zero. Hence, the
term vanishing gradient has been used to enlighten the fact that the contri-
bution of early steps of the unrolled computational graph is quite likely to
become negligible.

The introduction of the ReLU activation function can alleviate this prob-
lem, but also affects very deep networks with the opposite issue of exploding
gradients, caused by the same gradient product diverging due to the unre-
stricted function output space.

2.2.2 Complexity Analysis

The success of the Backpropagation algorithm is mostly due to its ability to
perform the gradient computation in a very efficient manner. In particular,
the forward flow of information inside the model, for a single input pattern, is
dominated by the weight matrices products needed for the neural activation
computation, resulting in a O(|W |) complexity.

The same applies for the backward pass, where once again the weight ma-
trices are leveraged in order to backpropagate the δℓ, resulting in the same
complexity of O(|W |). All the competing methods, such as computing deriva-
tives by finite differences, require a greater computational complexity.

In the context of the GNN learning procedure, there are synchronous up-
dates among all nodes and multiple iterations for the node state embedding,
with a computational complexity for each parameter update of O(T (|V | +
|E|)), where T is the number of iterations, |V | the number of nodes and |E|
the number of edges [35].

2.3 Regularization

The usage of mapping functions parametrized by many learnable variables
favours the creation of separating hyperplanes that highly adapt to the lower
dimensional manifolds populated by the input patterns, somehow memoriz-
ing the characteristics of the training data. However, such behaviour may
hinder the generalization capabilities of the model. Deep Neural Nets, often
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constituted by million of parameters, deeply suffer from this overfitting issue,
and often the trained models are not capable to generalize satisfactorily their
performance to the test data. In order to alleviate overfitting, some regular-
ization methods have been devised, that extend the learning problem with
additional soft-constraints that guide the optimization process restricting the
set of allowed parameters, thus limiting their degrees of freedom.

For the purpose of this Thesis, two methods will be exploited, given the
learnable parameter vector w and the loss function V (·):

L1-norm regularizer Reduces the parameters search space adding a
penalty, weighted by α > 0, in order to help the model to focus on a smaller
number of paths. The loss function is transformed:

V̂ (·) = V (·) + α∥w∥ (2.25)

L2-norm regularizer The parameters are softly enforced to not diverge
from zero, avoiding any excessive adaptation to the training data, transforming
the loss function:

V̂ (·) = V (·) + α

2
∥w∥2 (2.26)

This regularizer leads to the weight decay scheme.

2.4 The Lagrangian formalism

In the previous Sections, various Neural Network architectures and their learn-
ing mechanisms have been described via the unifying concept of computational
graph model. Each one of the submodules constituting such graph, i.e. each
node vi ∈ V from G = (V,E), can be seen as an independent component in the
data-flow. Therefore, in the following Chapters neural architectures will be
treated as a collection of submodules, whose interconnection and processing
scheme is defined via constraints. This entails several advantages in the com-
putational, memory and learning point of view. The information data flow
happening in the networks computational graph will be defined in the con-
text of constraint satisfaction. In order to deal with constrained optimization,
many techniques have been explored [55].
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In this section an overview on the Lagrangian formalism of constrained
optimization problems will be given. In particular, we will focus on the method
of Lagrange Multipliers, used to find stationary points of functions defined on
variables subject to equality constraints.

Suppose to have a variable x ∈ Rd which can be interpreted as a point in
a d-dimensional space. A constraint equation defined as

g(x) = 0 (2.27)

represents a (d− 1)-dimensional surface in the point space. The final goal
is to solve the following constrained optimization problem

minimize f(x)

subject to g(x) = 0
(2.28)

consisting in finding a minimum of a function of the x variable subject to
the g(x) = 0 constraint. We can derive the Lagrange multiplier method from
a geometrical perspective [22], firstly noting that for every point x lying on
the surface g(x) = 0, the gradient ∇g(x) is orthogonal the surface itself. To
prove this, starting from the surface point x, we can move along the surface
(in a direction parallel to it) by a small step ϵ with ϵ → 0. Hence, the new
position will be an infinitely close point x + ϵ. We can expand the function
by the Taylor series around x

g(x+ ϵ) ≃ g(x) + ϵT∇g(x) (2.29)

and considering that both the points lay on the surface, then g(x) =

g(x+ ϵ) = 0, Eq. (2.29) is reduced to ϵT∇g(x) = 0. Hence, being ϵ tangent
to the surface, the gradient of the constraint must be orthogonal to it.

The constrained optimization goal is to find a solution to the problem
defined in Eq. (2.28), i.e. a point x minimizing f(x) while lying on the surface.
Suppose that we are on a point x on the constraint surface where the gradient
∇f(x) is not parallel to ∇g(x). This means that there exist an admissible
direction where to move in order to minimize the function. Otherwise, if the
two gradients share the same direction,

∇f(x) = λ∇g(x) (2.30)
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it is assured that there is no direction causing an improvement in the
optimization process. The term λ is known as Lagrange multiplier and, if
defined over equality constraints, it can assume both positive and negative
values.

Hence, the Lagrangian function is defined as

L(x, λ) = f(x) + λg(x) (2.31)

such that its extrema are characterized by the condition of null gradient

∇f(x) + λ∇g(x) = 0

g(x) = 0
(2.32)

that requires the satisfaction of the Eq. (2.30) for a point x laying on the
constraint surface1.

Thanks to this approach, a constrained optimization problem can be cast
as an unconstrained one, solved seeking for the stationary points of the La-
grangian with respect to the new problem variables, x and λ.

2.5 A Lagrangian framework for BackPropagation

The Lagrangian formalism introduced in the previous section allows us to
attain a very interesting derivation of the BackPropagation algorithm, an
approach firstly introduced by LeCun [56]. This work nicely intercepts the
concepts exploited in this dissertation. BP is formalized as an optimization
problem subject to non-linear constraints. The problem will be cast into the
Lagrangian framework, with the goal of optimizing a Lagrangian function com-
posed by a cost function and constraints that describe the network dynamics.

In particular, the optimization process involves as usual the architecture
weights Wℓ ∀ℓ, and it is based on the addition of new auxiliary variables to
the learning problem, corresponding to the neural states X of the network.

Given an L-layered feed-forward DAG, the neural learning problem can be
written as

1In this context the sign of λ is changed with respect to the previous equation.
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minimize
N∑︂
i=1

V
(︁
yi, y

′
i

)︁
subject to xℓ,i − σ(Wℓ−1xℓ−1,i) = 0, ∀(i, ℓ) (2.33)

where the constraints define the network data-flow. The newly added vari-
able are constrained to follow the local neural unit computation dynamics.
Once the constraint is fulfilled, the forward propagation rule is obtained. If
we consider each layer/unit as a local component, the constraints define the
global architecture dynamics connecting such submodules. This constrained
optimization problem can be cast, following the Lagrangian formalism intro-
duced in Section 2.4, into the unconstrained Lagrangian function

L(W,X ,Λ) =
N∑︂
i=1

(︂
V (yi, y

′
i) +

L∑︂
ℓ=1

λT
ℓ,i

(︁
xℓ,i − σ(Wℓ−1xℓ−1,i)

)︁)︂
, (2.34)

where W is the set of all the network weights, X is the set of all the xℓ,i’s
variables and Λ collects the Lagrange multipliers (T is the transpose operator).

Once gain, note that when the constraints are fulfilled, the corresponding
term is zero, hence yielding the forward propagation step of BP,

xℓ,i = σ(Wℓ−1xℓ−1,i), ∀(i, ℓ) (2.35)

In this way, constraints define the forward dynamics in the computational
graph and describe the dependencies among the involved variables X .

To solve the unconstrained optimization problem, the author [56] points
out that a necessary condition defining a local minimum of the loss function
is

∇L(W,X ,Λ) = 0 (2.36)

which can be subdivided into the three conditions
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∂L(W,X ,Λ)

∂Λ
= 0 (2.37)

∂L(W,X ,Λ)

∂X
= 0 (2.38)

∂L(W,X ,Λ)

∂W
= 0. (2.39)

Equation (2.37) is decomposed into N × L conditions (i ∈ [1, ..., N ] and
ℓ ∈ [1, ..., L]), obtaining

∂L
∂λℓ,i

= xℓ,i − σ(Wℓ−1xℓ−1,i) = 0 ∀(i, ℓ) , (2.40)

that yields the forward pass dynamics.
To evaluate the second partial derivative (Eq. (2.38)), we firstly consider

the output layer states, xL,i = σ(WL−1xL−1,i),

∂L
∂xL,i

=
∂V (yi, y

′
i)

∂xL,i
+ λT

L,i = 0 ∀(i, ℓ) . (2.41)

The derivative with respect to layers ℓ ∈ [1, ..., L− 1] are

∂L
∂xℓ,i

= λℓ,i − λℓ+1,i ⊙W T
ℓ σ′(Wℓxℓ,i) = 0 ∀(i, ℓ) . (2.42)

It is interesting to note that, substituting δℓ,i = λℓ,i ⊙ σ′(Wℓ−1xℓ−1) into
Eq. (2.42), we obtain the backward dynamics of the BP algorithm,

δℓ,i = σ′(Wℓ−1xℓ−1,i)⊙
Ä
W T

ℓ δℓ+1,i

ä
. (2.43)

Hence, in this context, the Lagrange multipliers λℓ,i can be identified as
the backpropagated gradients.

Finally, the third condition (Eq. (2.39)) is evaluated for all the layers
ℓ ∈ [0, ..., L− 1].

∂L
∂Wℓ

= −
N∑︂
i=1

(︁
λℓ+1,i ⊙ σ′(Wℓxℓ,i)

)︁
xTℓ,i ∀ℓ . (2.44)
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Once again, exploiting the same change of variables δℓ,i = λℓ,i⊙σ′(Wℓ−1xℓ−1),
we obtain

∂L
∂Wℓ

= −
N∑︂
i=1

δℓ+1,i · xTℓ,i (2.45)

that is the BP equation for the weight update.
Summarizing, starting from a constrained problem describing the flow of

information happening inside a neural architecture, the evaluation of the asso-
ciated unconstrained Lagrangian problem makes it possible the derivation of
the BP algorithm. In particular, the three subconditions of Eqs. (2.37),(2.38),
and (2.39) yield the forward pass, backward pass and weight update
equations of the BP algorithm, respectively.

2.6 Constrained differential optimization

In Section 2.4 and 2.5 we have seen how the Lagrangian formalism can be useful
in order to face constrained optimization problems and derive the BP algo-
rithm, respectively. However, solving the unconstrained optimization problem
defined by the Lagrangian of Eq. (2.31) is not trivial.

An interesting analysis is given in the work by Platt and Barr [1], that
analyses the dynamics of a continuous time constrained neural learning system.
As noticed by the authors, techniques such as Gradient Descent (GD) do not
work with Lagrangian multipliers. In particular, GD applied on the energy in
Eq. (2.31) yields the component-wise differential equations

xi̇ = − ∂L
∂xi

= − ∂f

∂xi
− λ

∂g

∂xi
(2.46)

λ̇ = −∂L
∂λ

= −g(x) . (2.47)

Indeed, GD optimizes the learning parameters aiming at reaching the lo-
cal minima of the energy function, going towards the direction opposite with
respect to the gradient. Hence, the stationary points of the learning problem
must be attractors of this dynamics. However, the dual nature of the La-
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Figure 2.6: In BDMM [1] the state x is attracted toward the constraint
subspace. The state slides along the subspace moving to the minima of the
function f(·), undergoing damped oscillations dictated by the differential equa-
tions.

grangian multipliers causes the critical points to be saddle points, thus hard
to reach via GD.

The Basic Differential Multiplier Method (BDMM) [1] is a differential op-
timization process that can be interpreted as a force that gradually attracts
the state x to the subspace g(x) = 0, enforcing the constraint satisfaction
while reaching the minima of f(x) on the subspace itself. A depiction of the
process is shown in Fig. 2.6.

The constrained minima become attractors of the differential equations by
inverting the sign of Eq. (2.47), as

xi̇ = − ∂L
∂xi

= − ∂f

∂xi
− λ

∂g

∂xi
(2.48)

λ̇ = +g(x) (2.49)

which corresponds to Gradient Ascent on the Lagrangian multiplier λ.
The optimization process can be summarized in a minmax problem as

min
x

max
λ

L(x, λ) (2.50)

and easily extended to the case of multiple constraints [1]. Moreover, this
differential process can be interpreted, from the physics point of view, as a
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damped mass system which, under some conditions, is guaranteed to converge
to fulfill the constraints.





Chapter 3

Local Propagation in Neural Networks

Artificial Neural Networks have become extremely popular models, due to
their role in several important achievements in the Machine Learning commu-
nity [57]. If we consider the recent scientific contributions in the field, it is
often the case of new neural architectures that are designed to solve the task
at hand [58, 59], or of new architectures that are created as alternatives to
existing models [60].

The various ANNs models share the same architectural paradigm that can
be described by the computational graph scheme and the usage of Automatic
Differentiation (BackPropagation) techniques presented in Chapter 2. Such
characteristics represent the major components behind their success, but also
conceal several drawbacks such as the mandatory sequential nature of com-
putation (both in the forward and the backward phase of BackPropagation)
described in Section 2.1, which hinders the parallelization of computations,
and causes the problem of vanishing gradients (see Section 2.2.1).

The main idea behind this dissertation naturally deals with such weak-
nesses, trough the decomposition of the neural architecture processing scheme
into local components. In particular, in this Chapter general architectures
represented as DAGs are subdivided into local modules, i.e. artificial neurons,
whose computational scheme and learning mechanisms are described using the
unifying notion of “constraint” [28, 27]. This mathematical tool is leveraged
in order to describe the connections among local sub-modules. Moreover, we
nicely intercept the work of [56], where a theoretical framework for BackProp-
agation is studied in a Lagrangian formulation of learning (see Section 2.5).
We regard the neural architecture as a set of constraints that correspond with
the neural equations and enforce the consistency between the input and the
output variables by means of the corresponding weights of the synaptic con-
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nections. However, differently from [56], we do not only focus on the derivation
of BackPropagation in the Lagrangian framework, and we introduce a novel
approach to learning that explores the search in the adjoint space that is char-
acterized by the triple (w, x, λ), i.e., weights, neuron outputs, and Lagrangian
multipliers. The locality of the approach is obtained by the introduction of
the additional output variables x, that are constrained to be consistent with
the neural computation.

The main goal of the proposed approach is not to show improved per-
formance w.r.t. BackPropagation, with which it shares the same Lagrangian
derivation, but to propose an optimization scheme for the weights of a neural
network, that shows new and promising properties. Indeed, it turns out that
the gradient descent w.r.t to the variables (w, x) and the gradient ascent w.r.t
to the multipliers λ give rise to a truly local algorithm for the variable updates
that we refer to as Local Propagation (LP). By avoiding long dependencies
among variable gradients, this method nicely circumvents the vanishing gradi-
ent problem in optimizing neural networks. Moreover, the local nature of the
proposed algorithm enables the parallelization of the training computations
over the neural units. Finally, by interpreting Lagrange multipliers as the re-
action to single neural computations, the proposed scheme opens the door to
new methods for automatic architecture design in the deep learning scenario.

After a brief introduction to the related context given in Section 3.1, this
Chapter makes three important contributions. First, in Section 3.2 and 3.3
it introduces a local algorithm (LP) for training neural networks described
by means of the so-called architectural constraints, evaluating a simple op-
timization approach, together with the conditions under which we can see
the natural connection with BackPropagation. Second, the implementation of
popular neural network models is described in the context of LP, in Section
3.4. Third, we investigate the setting in which we tolerate bounded violations
of the architectural constraints (Section 3.3.2), and we provide experimental
evidence that LP is a feasible approach to train shallow and deep networks in
Section 3.5. LP also opens the road to further investigations on more complex
architectures, easily describable by means of constraints.
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3.1 Related Work

Besides the theoretical analysis carried on in the work by LeCun [56] and
presented in Section 2.5, which derives the BackPropagation algorithm via
a constrained formulation of learning, several other works share interesting
intuitions.

The idea of training ANNs described with constraints and extending the
space of learnable parameters has been originally introduced by the method
of auxiliary coordinates (MAC) [61], that exploits an optimization scheme
based on a quadratic penalty. The approach of [61] is built on the idea of
finding an approximate solution of the original learning problem, and it relies
on a post-processing procedure that refines the last-layer connections. The
related approach of [62] involves closed-form solutions, but most of the archi-
tectural constraints are softly enforced, and further additional variables are
introduced to parametrize the neuron activations. In particular the authors
showed great parallelization capabilities, training in multi-core processors and
showing an inverse linear scaling between training time and the number of
cores used. Other approaches followed these seminal works to implement con-
straining schemes for block-wise optimization of neural networks [63]. All
these approaches decompose the learning problem into multiple, local sub-
problems which are efficiently solved without using SGD or Adam. The work
by Carreira et al. [61] solves the learning problem via block coordinate de-
scent (BCD), while Taylor et al. [62] leverage the alternating direction method
of multipliers (ADMM). These approaches, that introduce auxiliary variables
into the learning problem, increase, or lift, the dimension of the problem itself.
For this reason recent works [64] refer to these models as Lifted Networks.

Another interesting line of research tries to find alternative mechanisms
for learning in ANNs, often guided by the claim of biological plausibility. Un-
doubtedly, inspiration taken from neuroscience advancements could, in princi-
ple, help in developing better artificial architectures. However, the emergence
of human intelligence and the brain computational structure can be ascribed
also to the need to sustain all the organism essential functionalities, and to
a gradual temporal process of learning, that happens in the whole lifetime of
each human. It is for these reasons that the claims made by many models in
modern literature, commonly consisting in computational graphs trained via
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BackPropagation (BP), around biological plausibility principles can be con-
sidered exaggerated. In this particular context, there are two main problems
beyond the biological implausibility of BackPropagation [65, 66].

• Weight transport problem – BP relies on identical forward and back-
wards weights, hence synaptic symmetry on both the paths. This is im-
plausible in biological brains, and known as the weight transport problem
[67].

• Non-local information – In BackPropagation, each unit activation af-
fects all the descendant neurons of the computational graph. Hence, the
weight updates are non-local and rely on upstream layers. It is unclear
how this information could be backwardly transmitted throughout the
neural synapses. End-to-end propagation of errors is unlikely to occur,
implying that local learning is required. In biological neural nets, neu-
rons act solely on the basis of their input neurons activity and on the
incoming/outcoming synaptic weights.

With this considerations in mind, some works propose methods dealing
with the two aforementioned problems [68, 69]. Several approaches approx-
imate BP using local update rules, such as Target-Prop[70] that estimates
backpropagated gradients via parametrized inverse functions. Equilibrium
Propagation [71] follows contrastive Hebbian rules in order to be capable to
asymptotically estimate BP, with memory and computational drawbacks. An-
other promising line of research showed that BP in simple MLPs [72] or ar-
bitrary DAGs [66] can be correctly approximated by Predictive Coding, a
biologically-plausible theory of the computation happening at cortical level,
that relies solely on local and Hebbian updates.

3.2 Constraint-based Neural Networks

In the context of this dissertation, the architectural setting shared by ANNs,
that has been introduced in Chapter 2, can be differently expressed by exploit-
ing the mathematical notion of constraints, following the intuition presented
in Section 2.5.
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As a brief summary of the setting presented in Section 2.1.1, we are given
N supervised pairs (x0,i, yi), i = 1, . . . , N , and we consider a generic neu-
ral architecture described by a Directed Acyclic Graph (DAG), that we can
instantiate as a Multi Layer Perceptron (MLP) with H hidden layers. The
output of a generic hidden layer ℓ ∈ [1, H] for the i-example is indicated with
xℓ,i that is a column vector with a number of components equal to the number
of hidden units in such layer. We also have that x0,i is the input signal, and
xℓ,i = σ(Wℓ−1xℓ−1,i), where σ(·) is the activation function that is intended to
operate element-wise on its vectorial argument (we assume that this property
holds in all the following functions). The matrix Wℓ−1 collects the weights
linking layer ℓ − 1 to ℓ. We avoid introducing bias terms in the argument of
σ(·), to simplify the notation. We denote the prediction of the model for the
pattern i with y′i = σ(WHxH,i). The function V (yi, y

′
i) computes the loss on

the i-th supervised pair, and, when summed up for all the N pairs, it yields
the objective function that is minimized by the learning algorithm. In the
case of classic neural networks, the variables involved in the optimization are
the weights Wℓ, ∀ℓ.

We formulate the learning problem decoupling the computation by describ-
ing the network architecture with a set of architectural constraints. In such
a way, each neural computation can be treated as a local component of the
overall architecture. The constraints enforce the communication and message
exchange among the local neighboring subparts.

In particular, following the same procedure described in Section 2.5, the
xℓ,i’s become variables of the learning problem, and they are constrained to
fulfil the (hard) architectural constraints xℓ,i = σ(Wℓ−1xℓ−1,i), i.e., 1

minimize
N∑︂
i=1

V (yi, y
′
i)

subject to G(xℓ,i − σ(Wℓ−1xℓ−1,i)) = 0, ∀(i, ℓ) (3.1)

being G(·) a generic function such that G(0) = 0, and that is only used to
differently weight the mismatch between xℓ,i and σ(Wℓ−1xℓ−1,i). The possible
choices for the function G will be discussed in Section 3.3.2. In the following,

1Without any loss of generality, we could also introduce the same constraint in the output
layer (ℓ = H + 1).
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we will also make use of the notation Gℓ,i to compactly indicate the left-hand
side of Eq. (3.1).

In the Lagrangian framework (see Section 2.4), if λℓ,i are the Lagrange
multipliers associated to each architectural constraint, then we can write the
Lagrangian function L as

L(W,X ,Λ) =

N∑︂
i=1

(︂
V (yi, y

′
i) +

H∑︂
ℓ=1

λT
ℓ,iGℓ,i

)︂
, (3.2)

where we only emphasized the dependance on the set of variables that are
involved in the learning process: W is the set of all the network weights; X is
the set of all the introduced xℓ,i’s variables; Λ collects the Lagrange multipliers
(T is the transpose operator2). The Lagrangian L can also be augmented with
a squared L2 norm regularizer (see Section 2.3) on the network weights, scaled
by a positive factor c.

3.3 Local Propagation in Constraint-based Neural
Networks

The problem definition described in Eq. (3.2) is the same one outlined in Sec-
tion 2.5. However, in our approach we do not just exploit the aforementioned
problem to derive BP, but we propose a novel local constraint-based opti-
mization process to devise information diffusion in neural architectures. In
order to do so, despite the variety of popular approaches that can be used to
solve the constrained problem above [55], we decided to exploit the Basic Dif-
ferential Multiplier Method [1], introduced in Section 2.6. Hence, the Local
Propagation (LP) algorithm consists in a “differential optimization” process
that enforces the constraints converging towards a saddle point of Eq. (3.2),
minimizing it with respect to W and X , and maximizing it with respect to
Λ (see Section 2.6). The whole procedure is very simple, and it consists in
performing a gradient-descent step to update W and X , and a gradient-ascent
step to update Λ, until we converge to a stationary point. As it will become

2Note that, given the vectorial notation we are using, λℓ,i is a column vector with a
number of components equal to the number of hidden units in such layer. Hence, it is
constituted by a component for each architectural constraint
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clear shortly, each iteration of the optimization algorithm is O(|W|) (without
considering the number of examples), that is, it exhibits the same optimal
asymptotical property of BackPropagation.

We initialize the variables in X and Λ to zero, while the weights W are
randomly chosen. For this reason, at the beginning of the optimization, the de-
gree of fulfillment is the same for all the architectural constraints Gℓ,i, ℓ > 1,
in every unit of all layers and for all examples, while only V (·, ·) and G1,i

contribute to the Lagrangian of Eq. (3.2). In fact, only these two local far-
thest portions of the architecture are influenced by external knowledge, the
input pattern and the target, respectively. Afterwards, the message exchange
among local components propagates inside the architectures connecting the
whole computational structure. In the case of BackPropagation, the out-
puts of the neural units are the outcome of the classic forward step, while
in the training stage of LP the evolution of the variables in X is dictated by
gradient-based optimization. Indeed, in LP the forward propagation itself is
the outcome of a constraint-fulfilment process guided by differential optimiza-
tion. Once LP has converged, the architectural constraints of Eq. (3.1) are
satisfied, so that we can easily devise the values in X with the same forward
step of BackPropagation-trained networks. In other words, we can consider
LP as an algorithm to train the network weights while still relying on the
classic forward pass during inference.

3.3.1 Properties of Local Learning

The LP algorithm is inspired by the main idea underlying this dissertation,
that is the locality of computations. The main advantage of such approach,
in the context of this Chapter, is reflected on the gradient computations with
respect to a certain variable of layer ℓ, that only involve units belonging (at
most) to neighbouring layers. This is largely different from the usual case of
the BackPropagation (BP) algorithm, where the gradient of the cost function
with respect to a certain weight in layer ℓ is computed only after a forward
step (that involves all the neural units of all layers), and then by progressively
computing the gradients back-propagating layer-wise the errors δℓ (see Eq.
(2.23) and Section 2.2) with respect to all the units above ℓ (backward) (see
Fig. 3.1 (a)).
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Figure 3.1: Left: the neurons and weights that are involved in the com-
putations to update the red-dotted weight w are highlighted in yellow. (a)
BackPropagation; (b) Local Propagation – the computations required to up-
date the variables x, λ (associated to the red neuron) are also considered.
Right: (c) ResNet in the case of H = 3, and (d) after the change of variables
(xℓ → x̃ℓ) described in Sec. 3.4. Greenish circles are sums, and the notation
inℓ inside a rectangular block indicates the block input.

Differently, in the case of LP we have

∂L
∂Wℓ

=−
N∑︂
i=1

(︁
λℓ+1,i ⊙ G′

ℓ+1,i ⊙ σ′(Wℓxℓ,i)
)︁
xTℓ,i (3.3)

∂L
∂xℓ,i

=λℓ,i ⊙ G′
ℓ,i−W T

ℓ

(︁
λℓ+1,i ⊙G′

ℓ+1,i ⊙σ′(Wℓxℓ,i)
)︁

(3.4)

∂L
∂xH,i

=λH,i ⊙ G′
H,i +W T

H

(︁
V ′(yi, y

′
i)
)︁

(3.5)

∂L
∂λℓ,i

=Gℓ,i (3.6)

where G′, σ′ and V ′ are the first derivatives of the respective functions, and
⊙ denotes the Hadamard product. The equations above hold for all i ∈
[1, n] and ℓ ∈ [1, H], with the exception of Eq. (3.4) that holds for ℓ ∈
[1, H − 1]. It is evident that each partial derivative with respect to a variable
associated to layer ℓ only involves terms that belong to the same layer (e.g.,
∂L/∂λℓ,i) and also to either layer ℓ− 1 (as in ∂L/∂Wℓ, given the presence of
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xℓ,i = σ(Wℓ−1xℓ−1,i) ) or layer ℓ + 1 (the case of ∂L/∂xℓ,i), that is, gradient
computations are local (see Fig. 3.1 (b)).

This analysis reveals the full local structure of the algorithm for the dis-
covery of saddle points. The role of the local updates is twofold: first, they
project the variables onto the feasible region defined by the Gℓ,i constraints;
second, they allow the information attached to the supervised pairs to flow
from the loss function V (·, ·) through the network. The latter consideration
is critical, since the information can flow through a large number of paths,
and many iterations could be required to keep the model projected onto the
feasible region and efficiently learn the network weights. In Section 3.5 we will
also explore the possibility of enforcing a L1-norm regularizer (weighted by
α > 0) on each xℓ,i, in order to help the model to focus on a smaller number
of paths from input to output units, reducing the search space.

Parallel Computations over Layers. As already emphasized, in Back-
Propagation we have to perform a set of sequential computations over layers
to complete the forward stage, and only afterwards we can start to sequen-
tially compute the gradients, moving from the top layer down to the currently
considered one (backward computations). Modern hardware (GPUs) can ben-
efit by the layer-wise parallelization of the matrix operations, and there are
no means to introduce further parallelization over multiple layers. Thanks to
the decoupling principles of the proposed approach, in LP the locality in the
gradient computation allows us to go beyond that. We can promptly see from
Eq. (3.3-3.6) that we can trivially distribute all the computations associated
to each layer ℓ in a different computational unit. Of course, the ℓ-th compu-
tational unit needs to share the memory where some variables are stored with
the (ℓ+ 1)-th and (ℓ− 1)-th units (see Eq. (3.3-3.6)).

Introducing Noise via Constraint Satisfaction Learning in the space
to which the variables W,X ,Λ belong introduces a particular information
flow through the network. If, during the optimization stage, the architectural
constraints of Eq. (3.1) are strongly violated, then the updates applied to the
network weights are not related to the ground truths that are attached to
the loss function V (·), and we can imagine that the gradients are just noise.
Differently, when the constraints are fulfilled, the information traverses the
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network in a similar way to what happens in BackPropagation, i.e., in a noise-
free manner. When the optimization proceeds, we progressively get closer
to the fulfilment of the constraints, so that the noisy information is reduced.
It is the learning algorithm itself that decides how to reduce the noise, in
conjunction with the reduction of the loss on the supervised pairs. It has
been shown that introducing a progressively reduced noise contribution to the
gradient helps the BackPropagation algorithm to improve the quality of the
solution, allowing very deep networks to be trained also when selecting low
quality initialization of the weights [73]. The LP natively embeds this property
so that, differently from [73], the noise reduction scheme is not a hand-designed
procedure. Moreover, the local gradient computations of LP naturally offer
a setting that is more robust to the problem of vanishing gradients, which
afflicts BackPropagation when training deep neural networks.

Recovering BackPropagation. Similarly to the procedure presented in
Section 2.5, the connections between the LP algorithm and BackPropagation
become evident when imposing the stationary condition on the Lagrangian
∂L/∂λℓ,i = 0 and ∂L/∂xℓ,i = 0. For the purpose of this description, let G(·)
be the identity function. From Eq. (3.6), we can immediately see that the
stationary condition ∂L/∂λℓ,i = 0 leads to the classic expression to compute
the outputs of the neural units, xℓ,i = σ(Wℓ−1xℓ−1,i), that is associated to
the forward step of BackPropagation. Differently, when imposing ∂L/∂λℓ,i =

0 and defining δℓ,i = λℓ,i ⊙ σ′(Wℓ−1xℓ−1,i), Eq. (3.3) and Eq. (3.4) can be
respectively rewritten as

∂L
∂Wℓ−1

= −
N∑︂
i=1

δℓ,i · xTℓ−1,i,

δℓ,i = σ′(Wℓ−1xℓ−1,i)⊙
Ä
W T

ℓ δℓ+1,i

ä
,

that are the popular equations for updating weights and the BackPropa-
gation deltas (Eq. (2.23)).

From this perspective, the BackPropagation algorithm represents the op-
timum w.r.t. the stationary conditions connected to the λℓ,i and the xℓ,i when
compared with Local Propagation. However, by strictly searching only on
the hyperplane where the Lagrangian is stationary w.r.t λℓ,i and xℓ,i, Back-
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Figure 3.2: The mapping defined by the ε-insensitive functions, abs-ε and
lin-ε.

Propagation loses the locality and parallelization properties characterizing our
algorithm.

The decomposition of computation into units depending on local quantities
allows us to compute gradients relying solely on the variables of neighboring
layers, whilst in BP such computation depends on all the variables of the
architecture.

3.3.2 Epsilon-insensitive Constraints

In order to facilitate the convergence of the optimization algorithm or to im-
prove its numerical robustness, we can select different classes of G(·) functions
in Eq. (3.1). We focus on the class of ε-insensitive functions, and, in particular,
on the following two cases G ∈ {abs-ε, lin-ε}, depicted in Figure 3.2

abs-ε(a) = max(|a| − ε, 0)

lin-ε(a) = max(a, ε)−max(−a, ε) .

Both the functions are continuous, map values in [−ε, ε] to zero, and
they are linear out of such interval. However, abs-ε(·) is always positive,
while lin-ε(·) is negative for arguments smaller than −ε. When plugged into
Eq. (3.1), they allow the architectural constraints to tolerate a bounded mis-
match in the values of xℓ,i and σ(Wℓ−1xℓ−1,i) (ε-insensitive constraints). By
way of example, let us consider two different input patterns indexed by i and
j, for which we get two similar values σ(Wℓ−1xℓ−1,i) and σ(Wℓ−1xℓ−1,j) in a
given layer ℓ. Then, for small values of ε, the same value xℓ,i = xℓ,j can be
selected by the optimization algorithm, thus propagating the same signal to
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the units of the layer above. In other words, ε-insensitive constraints intro-
duce a simple form of regularization when training the network, that allows
the network itself not to be influenced by small changes in the neuron inputs,
thus stabilizing the training step. Notice that, at test stage, if we compute
the values of xℓ,i’s with the classic forward procedure, then the network will
not take into account the G(·) function anymore. If ε is too large, there will
be a large discrepancy between the setting in which the weights are learned
and the one in which they are used to make new predictions. This could end
up in a loss of performances, but it is in line with what happens in the case
of the popular Dropout [74] when the selected drop-unit factor is too large.

Augmented Lagrangian

A key difference between abs-ε(·) and lin-ε(·) is the effect they have in the de-
velopment of the Lagrange multipliers. It is trivial to see that, since abs-ε(·)
is always positive, the multipliers λℓ,i can only increase during the optimiza-
tion (Eq. (3.6)). In the case of lin-ε(·), the multipliers can both increase or
decrease. We found that abs-ε(·) leads to a more stable learning, where the
violations of the constraints change more smoothly that in the case of lin-ε(·).
In such a way, the constrained problem is altered in order to have a region
of positive damping surrounding the stationary point, facilitating the conver-
gence. A popular way to improve the numerical stability of the algorithm is
to introduce the so called Augmented Lagrangian [55], where L of Eq. (3.2) is
augmented with an additive term ρ∥Gℓ,i∥2, for all i, ℓ. This approach combines
the penalty methods with the Lagrangian approach, yielding a Modified Dif-
ferential Method of Multipliers (MDMM) [1], that enforces a local convergence
around the constrained minima.

3.4 LP formulation for Neural Models

The described constraint-based formulation of neural networks and the LP
algorithm can be easily applied to the most popular neural units, thus of-
fering a generic framework for learning in neural networks. It is trivial to
rewrite Eq. (3.1) to model convolutional units and implement Convolutional
Neural Networks (CNNs) (see Section 2.1.3), and also the pooling layers can
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be straightforwardly described with constraints. We study in detail the cases
of Recurrent Neural Networks (RNNs) and of Residual Networks (ResNets).
In order to simplify the following descriptions, we consider the case in which
we have only N = 1 supervised pairs, and we drop the index i to make the
notation simpler.

Recurrent Neural Networks. At a first glance, RNNs (see Section 2.1.2)
might sound more complicated to implement in the proposed framework. As
a matter of fact, when dealing with RNNs and BackPropagation, we have to
take care of the temporal unfolding of the network itself (BackPropagation
Through Time)3. However, we can directly write the recurrence by means of
architectural constraints and, we get that, for all time steps t and for all layers
ℓ ∈ [1, H],

G
Ä
x
(t)
ℓ − σ(Wℓ−1x

(t)
ℓ−1 + Uℓx

(t−1)
ℓ )

ä
= 0 ,

where Uℓ is the matrix of the weights that tune the contribution of the state
at the previous time step. The constraint-based formulation only requires to
introduce constraints over all considered time instants. This implies that also
the variables xℓ and the multipliers λℓ are replicated over time (superscript
t). The optimization algorithm has no differences with respect to what we
described so far, and all the aforementioned properties of LP (Sec. 3.3) still
hold also in the case of RNNs. While it is very well known that recurrent
neural networks can deal only with sequential or DAG inputs structures (i.e.
no cycles), LP architectural constraints show no ordering, since we ask for the
overall fulfillment of the constraints. This property opens the door to the po-
tential application of the proposed algorithm to problems dealing with generic
graphical inputs, which is a very hot topic in the deep learning community
[35, 75, 76].

Residual Networks. ResNets (see Section 2.1.3) consist of several stacked
residual units, that have been popularized by their property of being robust
with respect to the vanishing gradient problem, showing state-of-the art re-
sults in Deep Convolutional Neural Nets [44] (without being limited to such

3What we study here can be further extended to the case of Long Short-Term Memories
(LSTMs) [42]
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networks). The most generic form of a single residual unit has been described
in Section 2.1.3,

xℓ = z(h(xℓ−1) + f(Wℓ−1xℓ−1)) . (3.7)

In the popular paper [44], we have that z(·) is a rectifier (ReLu) and h(·) is
the identity function, while f(·) is a non-linear function. On one hand, it is
trivial to implement a residual unit as a constraint of LP once we introduce
the constraint

G(xℓ − z(h(xℓ−1) + f(Wℓ−1xℓ−1))) = 0 . (3.8)

However, we are left with the question whether these units still provide the
same advantages that they show in the case of backprop-optimized networks.
In order to investigate the ResNet properties, we focus on the identity mapping
of [45], where z(·) and h(·) are both identity functions, and, for the sake of
simplicity, f(·) is a plain neural unit with activation function σ,

xℓ = xℓ−1 + σ(Wℓ−1xℓ−1) , (3.9)

as sketched in Fig. 3.1 (c). This implementation of residual units is the one
where it is easier to appreciate how the signal propagates through the network,
both in the forward and backward steps. The authors of [44] show that the
signal propagates from layer ℓ to layer L > ℓ by means of additive operations,
xL = xℓ +

∑︁L−1
j=ℓ σ(Wjxj), while in common feedforward nets we have a set of

products. Such property implies that the gradient of the loss function V (y, y′)

with respect to xℓ is

∂V

∂xℓ
=

∂V

∂xH

Å
1 +

∂

∂xℓ

H−1∑︂
j=ℓ

σ(Wjxj)

ã
, (3.10)

that clearly shows that there is a direct gradient propagation from V to layer
ℓ (due to the additive term 1). Due to the locality of the LP approach, this
property is lost when computing the gradients of each architectural constraint,
that in the case of the residual units of Eq. (3.9) are

G(xℓ − xℓ−1 − σ(Wℓ−1xℓ−1)) = 0 . (3.11)

As a matter of fact, the loss V (y, y′), being y′ = σ(WHxH) will only have a
role in the gradient with respect to variables xH and WH , and no immediate
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effect in the gradient computations related to the other constraints/variables.
However, we can rewrite Eq. (3.11) by introducing x̃ℓ = xℓ − xℓ−1, that leads
to xℓ = x̃ℓ + xℓ−1. By repeating the substitutions, we get xℓ =

∑︁ℓ
j=0 x̃j , and

Eq. (3.11) becomes4

G
Å
x̃ℓ − σ

(︂
Wℓ−1 ·

ℓ−1∑︂
j=0

x̃j

)︂ã
= 0 , (3.12)

where the arguments of the loss function change to V
(︁
y, σ(WH ·

∑︁H
j=0 x̃j)

)︁
.

Interestingly, this corresponds to a feed-forward network with activations that
depend on the sum of the outputs of all the layers below, as shown in Fig. 3.1
(d). Given this new form of the second argument of V (·, ·), it is now evident
that even if the gradient computations are local, the outputs of all the layers
directly participate to such computations, formally

∂L
∂x̃ℓ

=
∂V

∂x̃ℓ
+

∂

∂x̃ℓ

H∑︂
j=ℓ

Gj . (3.13)

Differently from Eq. (3.10), ∂V
∂x̃ℓ

(that is the same ∀ℓ) does not scale the
gradients of the summation, so that the gradients coming from the constraints
of all the hidden layers above ℓ are directly accumulated by sum.

3.5 Experiments

We designed a batch of experiments aimed at validating the simple local op-
timization approach to constraint-based networks presented in this Chapter.
Our goal is to show that the approach is feasible and that the learned networks
have generalization skills that are in-line with BackPropagation, also when us-
ing multiple hidden layers. In other words, we show that the new properties
provided by the Local Propagation algorithm (i.e. locality and parallelization)
do not correspond to a loss in performance w.r.t. BP, even if the search space
has been augmented with the unit activations and the Lagrange multipliers
variables.

4We set x̃0 = x0 (x̃0 is not a variable of the learning problem).
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Table 3.1: Number of patterns, of input features and of output classes in the
datasets exploited for benchmarking the LP algorithm.

Dataset Examples Dimensions Classes

Adult 48842 14 2
Ionosphere 351 33 2
Letter 20000 16 26
Pima 768 8 2
Wine 179 13 3
Ozone 2536 72 2
Dermatology 366 34 6
MNIST 70000 784 10

Setting & Data. We performed experiments on 7 benchmarks from the
UCI repository [77], and on the MNIST data (Table 3.1). The MNIST is
partitioned into the standard training, validation and test sets, while in the
case of the UCI data we followed the experimental setup of [78], where the
authors used the training and validation partitions of [79] to tune the model
parameters, and 4-folds to compute the final accuracy (averaged over the 4
test splits)5.

Parameters. We evaluated several combinations of the involved parame-
ters, varying them in: ε ∈ {0, 10−4, 10−3, 10−2}, ρ ∈ {10−2, 10}, c ∈ {0, 0.001},
dropout keep-rate (BP only) ∈ {0.7, 0.8, 0.9}, α ∈ {0, 10−8, 10−5, 10−4, 10−3,

10−1}. We used the Adam optimizer (TensorFlow), where the learning rate
ηw for updating variables W is ∈ {10−4, 10−3, 10−2}, and the learning rate ηz
for updating X ,Λ is ∈ {0.1 · ηw, 10 · ηw}. We used the same initialization of
the weight matrices for BP and LP.

Since similar behaviours are shown by both sigmoid and ReLU activa-
tions, in our experiments, we exploited only the former, in order to reduce the
hyper-parameter search space. We trained our models for thousands epochs,
measuring the accuracy on the validation data (or, if not available, a held-out
portion of the training set) to select the best W.

UCI performances. We evaluated the accuracies of BP and LP focussing
on the same pair of architectures (sigmoidal activation units), that is composed

5In the case of the Adult data we have only 1 test split.
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Table 3.2: Performances of the same architectures optimized with BP and
LP. Left: H = 1 hidden layer (100 units); right: H = 3 hidden layers (30 units
each). Largest average accuracies are in bold.

BP (H = 1) LP (H = 1) BP (H = 3) LP (H = 3)

Adult 84.66 ±0.00 85.43 ±0.00 84.91 ±0.00 85.34 ±0.00

Iono. 91.48 ±0.57 91.48 ±2.95 92.61 ±0.57 94.60 ±1.86

Letter 94.20 ±0.31 94.94 ±0.05 92.27 ±0.19 90.42 ±0.78

Pima 76.17 ±1.62 77.21 ±2.79 76.56 ±2.42 75.91 ±1.54

Wine 97.16 ±1.88 98.86 ±1.14 97.73 ±2.78 98.86 ±1.97

Ozone 97.04 ±0.26 97.12 ±0.13 97.28 ±0.13 97.20 ±0.17

Derma. 95.60 ±1.74 96.70 ±1.74 97.53 ±1.20 98.63 ±0.48

ε
ε

Figure 3.3: Accuracies of BP and LP (with different ε-insensitive functions,
abs-ε, lin-ε) on the MNIST data.

by a shallow net with 1 hidden layer of 100 units, and a deeper network with 3
hidden layers of 30 units each, reporting results in Table 3.2. Both algorithms
perform very similarly, with LP having some minor overall improvements over
BP.

MNIST performances. Similar conclusions can be drawn in the case
of the MNIST data, as shown in Fig. 3.3. In this case, we considered deeper
networks with up to 10 hidden layers (10 neurons on each layer), and we also
evaluated the impact of the different ε-insensitive constraints of Section 3.3.2.
We considered 5 different runs, reporting the test accuracy corresponding to
the largest result on the validation data. When using lin-ε(·) as the G(·)
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Figure 3.4: Convergence speed of BP and LP in the MNIST dataset (left),
and in the Letter data (right).

function, we faced an oscillating behaviour of the learning procedure due to
the inherent double-signed violation of the constraints. The Augmented La-
grangian (ρ > 0) resulted to be fundamental for the stability and for improving
the convergence speed of LP.

Due to local nature of LP and to the larger number of variables involved
in the optimization, we usually experimented an initial transitory stage in the
optimization process, where the system is still far from fulfilling the available
constraints, and the model accuracy is small, as shown in Fig. 3.4. This some-
times implies a larger number of iterations with respect to BackPropagation
to converge to a solution (Fig. 3.4 (left) - MNIST), as expected, but it is not
always the case (Fig. 3.4 (right) - Letter).

The role of ε-insensitive constraints In order to better understand
how LP behaves, we deeply explored the previously discussed results of Ta-
ble 3.2. First, we evaluated the role of the ε-insensitive constraints, reporting
in Table 3.3 (top-half) the results for the case in which ε = 0 and ε > 0. Then,
we explored the effect of including the L1-norm regularization term, as shown
in Table 3.3 (bottom-half ) (α = 0 means no-L1-regularization). In the case of
shallow networks, ε > 0 offers performances that, on average, are preferable
or on-par to the case in which no-tolerance is considered (both for abs-ε and
lin-ε). This consideration is not evident in the case of deeper nets, where
a too strong insensitivity might badly propagate the signal from the ground
truth to the lower layers. We notice that while this is evident in the case of
UCI data, we did not experienced this behaviour in the case of MNIST of the
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Table 3.3: Accuracies of LP when using (ε > 0) or not using (ε = 0) ε-
insensitive constraints (top-half ) and when using (α > 0) or not using (α = 0)
L1-norm-based regularization on the outputs of each layer (bottom-half ). We
report the cases of the abs-ε and lin-ε functions, and we compare architectures
with H = 1 hidden layer (100 units) and H = 3 hidden layers (30 units each).

H = 1

ε = 0 (abs-ε) ε > 0 (abs-ε) ε = 0 (lin-ε) ε > 0 (lin-ε)

Adult 85.33 85.33 85.43 85.27

Iono 91.48 ±2.95 91.19 ±2.71 90.34 ±0.98 91.19 ±2.18

Letter 94.94 ±0.05 94.85 ±0.06 93.71 ±0.20 94.00 ±0.27

Pima 75.39 ±2.03 77.21 ±2.79 75.00 ±1.77 75.78 ±1.97

Wine 97.73 ±1.61 98.86 ±1.14 98.30 ±1.88 98.30 ±1.88

Ozone 97.04 ±0.13 97.04 ±0.13 96.96 ±0.30 97.12 ±0.13

Derma. 95.60 ±0.78 95.33 ±2.11 95.60 ±1.74 96.70 ±1.74

α = 0 (abs-ε) α > 0 (abs-ε) α = 0 (lin-ε) α > 0 (lin-ε)

Adult 85.33 85.33 85.27 85.43
Iono 90.63 ±0.49 91.48 ±2.95 91.19 ±2.18 90.06 ±2.71

Letter 94.85 ±0.27 94.94 ±0.05 93.78 ±0.38 94.00 ±0.27

Pima 75.39 ±2.03 77.21 ±2.79 75.78 ±1.97 75.00 ±1.77

Wine 98.86 ±1.97 98.86 ±1.14 98.30 ±1.88 97.73 ±1.61

Ozone 97.00 ±0.11 97.04 ±0.13 97.12 ±0.13 96.96 ±0.30

Derma. 95.60 ±1.10 95.60 ±0.78 95.88 ±1.43 96.70 ±1.74

H = 3

ε = 0 (abs-ε) ε > 0 (abs-ε) ε = 0 (lin-ε) ε > 0 (lin-ε)
Adult 85.34 85.25 85.25 85.23

Iono 94.60 ±1.86 94.32 ±1.14 92.61 ±1.27 91.19 ±0.94

Letter 87.60 ±0.48 87.54 ±0.48 90.42 ±0.78 90.39 ±0.27

Pima 75.52 ±1.91 75.91 ±3.34 74.48 ±0.90 75.91 ±1.54

Wine 97.73 ±3.94 97.73 ±2.78 98.86 ±1.97 97.73 ±1.61

Ozone 97.08 ±0.14 97.20 ±0.17 97.16 ±0.22 97.04 ±0.34

Derma. 98.63 ±0.48 97.80 ±0.78 97.80 ±0.78 98.08 ±0.91

α = 0 (abs-ε) α > 0 (abs-ε) α = 0 (lin-ε) α > 0 (lin-ε)

Adult 85.34 84.93 85.23 85.25
Iono 90.34 ±1.70 94.60 ±1.86 89.77 ±2.27 92.61 ±1.27

Letter 87.60 ±0.48 87.54 ±0.48 90.42 ±0.78 88.88 ±0.45

Pima 75.91 ±3.34 75.65 ±3.62 75.91 ±1.54 75.65 ±1.89

Wine 97.73 ±2.78 96.59 ±3.77 98.86 ±1.97 97.73 ±1.61

Ozone 97.08 ±0.14 97.20 ±0.17 97.08 ±0.14 97.16 ±0.22

Derma. 97.80 ±0.78 98.63 ±0.48 98.08 ±0.91 97.80 ±0.78

aforementioned Fig. 3.3, where the best accuracies where usually associated
with ε > 0. This might be due to the smallest redundancy of information
in the UCI data with respect to MNIST. When focussing on the effect of the
L1-norm-based regularization (Table 3.3, bottom-half), we can easily see that
such regularization helps in several cases, suggesting that it is an useful feature
that should be considered in validating LP-based networks. This is due to the
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sparsification effect that emphasizes only a few neurons per layer, allowing LP
to focus on a smaller number of input-output paths.

Constraints insensitivity and deeper nets The locality of the gradient
computations in LP ideally offer a setting that is more robust to the problem
of vanishing gradients. Indeed, each computation rely solely on local quan-
tities, avoiding the sequential nature of computation characterizing BP. Such
local variables, xℓ,i, are the result of a learning dynamic that depends on the
constrained optimization mechanism of BDMM. When such constraints are
not completely fulfilled, such as in the case of the introduction of ε-regulated
insensitivity, the variable update becomes noisy and less representative of the
true contributions coming from the neighboring layers. Whilst this behaviour
could favour generalization [73], the increase of the depth of the neural network
model at hand (see Figure 3.3) foster the injection of an increasing amount
of noise in the variable updates. This could hinder the correct propagation of
the signal from the ground truth to the lower layers. Solutions that force the
constraints to be fulfilled in the long term, such as the Augmented Lagrangian
term or higher order dynamics [80], as long as a longer training phase up to
the exact constraint satisfaction, could alleviate this drawback.

3.6 Discussion

This Chapter presented the first implementation of the idea of decomposing
artificial neural networks into local components to foster the representation of
their computational structure by constraints, giving rise to the Local Propa-
gation algorithm. We presented a novel way of interpreting the architecture
of neural networks and of the learning process for their parameters, based on
the so-called architectural constraints. It has been shown that the Lagrangian
formulation in the adjoint space leads to a fully local algorithm, LP, that
naturally emerges when searching for saddle points. An experimental analy-
sis on several benchmarks assessed the feasibility of the proposed approach,
whose connections with popular neural models has been described. Despite
its simplicity and its strongly parallelizable computations, LP introduces ad-
ditional variables to the learning problem. Some ideas and future works will
be presented in Chapter 6.
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We analyzed the application of LP to several architectures, but its powerful
nature opens the road to further investigations on complex neural architec-
tures, such as the ones that operate on graphs, that will be the subject of the
following Chapter.





Chapter 4

Lagrangian Propagation Graph Neural
Networks

The neural architectures exploited in the previous Chapter are commonly used
to deal with data that exhibit a "flat" structure, that can be easily represented
with a vector embedded in an Euclidean space. Conversely, several real-world
applications are characterized by data with an underlying structure composed
by entities, their properties, and relations among them, naturally represented
with the mathematical notion of graphs. The increasing interest [81] in Graph
Neural Network models, that have been introduced in Section 2.1.4, testifies
the recent trend in dealing with such kind of data.

All the models falling under the umbrella of GNNs (or MPNNs), generally
share the same learning mechanism based on error BackPropagation (BP),
that when processing structured data is straightforwardly extended by the
process of unfolding, as described in Section 2.2.1. A network topology based
on the current input structure is generated by replicating a base neural network
module (e.g. BP Through Time, BP Through Structure).

Bearing in mind the main idea spanning this dissertation, one could think
to simply inject the Local Propagation algorithm (Chapter 3) into this class of
graph architectures, especially attracted by the local nature of computations,
and its applicability to learn any computational structure, both acyclical or
cyclical.

However, the main drawback of the Lifted Methods (i.e. weak points
shared by LP and related approaches [61, 62]) is that they are quite memory
inefficient; in particular, they need to keep extra-variables for each hidden
neuron and for each example. This makes them inapplicable to large problems,
like the ones available in graph data, where BP is still the only viable option.
However, in this Chapter we will introduce a novel mixed method which is
still inspired by the principle of locality, which is leveraged to describe the
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computational structure of the problem using the unifying notion of constraint.

Recent trends in the field of Graph Representation learning leverage MPNN
models (see Section 2.1.4) composed by a limited number of layers. Indeed,
stacking T layers of parametrized aggregation fosters layer–wise message prop-
agation inside the T -hop neighborhood of the nodes. Several works highlighted
the advantages of such solution, for instance the fact that this models are Tur-
ing Universal if their capacity, defined as the product of the dimension of the
state vector representation by the network depth (number of layers), is large
enough [82]. However, having many layers will wash away node features infor-
mation [52], an issue that can be overcome with some tricks involving residual
connections or particular node aggregation functions.

The seminal Graph Neural Network model [53] represents a more general
message passing scheme on graphs. The learning process requires, for each
training epoch, an iterative diffusion mechanism that is repeated until it con-
verges to a stable fixed point, requiring a multi-stage optimization procedure
that is computationally expensive and less practical than models based on
gradient-based optimization. The iterative process can be early stopped to
speed-up the computation, but this ends up in limiting the quality of the
outcome of the local encoding, virtually reducing the depth of the diffusion
along the graph of the information carried by each node. The diffusion mecha-
nism at convergence virtually involves all the graph, not only a T -hop limited
neighborhood.

Leveraging the principles guiding this dissertation, we propose a new learn-
ing mechanism for GNNs that is based on the decomposition of the unfolded
computational graph of the model. We exploit the same Lagrangian formu-
lation characterizing the Local Propagation algorithm, in which we represent
the diffusion of information and the relationship between each node and its
local neighborhood by a set of constraints. Finding node state representations
that fulfill the constraints is a simple way to rethink the computation of the
fixed point of the aforementioned diffusion process. In particular, we exploit
the same differential optimization process already described in the context of
Chapter 3, to devise a learning scheme that is fully based on BP and where the
state representations and the weights of the state transition and output func-
tions are jointly optimized without the need of applying any separate iterative
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procedures at every training epoch.
Differently from Local Propagation (Chapter 3), both the state transition

function and the output function are classic BP-trainable models, that are
shared by all the training examples, whereas the only additional variables of
the learning problem are associated to the nodes of the graphs. This allows us
to find a good trade off between the flexibility introduced by the Lagrangian-
based formulation of the graph diffusion and the addition of new variables.
We further extend this idea computing multiple representations of each node
by means of a pipeline of constraints that very much resembles a multi-layer
computational scheme. In particular, the evolving representation of each node
is treated as new information attached to the node itself. Another state tran-
sition function is introduced, that has the use of such new information, while
constraints enforce a parallel diffusion process that leads to the development of
another representation of the node. This procedure can be replicated multiple
times, thus simulating a deep constraining scheme that augments the rep-
resentation capabilities of the GNN. Experimental results on several popular
benchmarks emphasize the quality of the proposed model, hereafter referred to
as Lagrangian Propagation GNN (LP-GNN), that compares favourably with
the original GNN model and more recent variants.

This Chapter is organized as follows. Section 4.1 reviews the recent de-
velopments in the field of Neural Network models for processing graphs and
learning methods based on constraint base formulations. Section 4.2 intro-
duces the basics of the GNN model in the context of our constrained ap-
proach, followed by the proposed Lagrangian formulation of GNNs, and the
multi-layered model in Section 4.3. Section 4.4 reports an experimental eval-
uation. Finally, conclusions are drawn in Section 4.5.

4.1 Related Work

Despite the large ubiquity of data collected in Euclidean domains in which
each sample is a fixed-length vector, a large number of application domains
require to handle data that are characterized by an underlying structure that
lays on a non-Euclidean domain, i.e. graphs [83]. Whilst commonly addressed
in relational learning, such domains have been initially not taken into account
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by popular machine learning techniques, that have been mostly devised for
grid–like and Euclidean structured data [83]. We will describe in the following
some of the most important facets of this trending topic.

4.1.1 Extending ANNs to graphs

Early machine learning approaches for structured data were designed for di-
rected acyclic graphs [84, 49], while a more generic framework is represented
by the aforementioned GNNs [53], able to deal with directed, undirected and
cyclic graphs. The iterative encoding procedure up to the fixed point of the
state transition function fosters the diffusion among neighboring nodes, but
it is a computationally expensive process. Some methods were aimed at sim-
plifying this step, such as the scheme proposed in [85] that exploits gated
recurrent units. These models are usually denoted as Recurrent GNNs.

More recently, a large number of approaches further extended the afore-
mentioned research direction. They differ in the choice of the neighborhood
aggregation method and in the graph level pooling scheme, and they can be
categorized into two main areas. Spectral approaches exploit particular embed-
dings of the graph and convolution operations defined in the spectral domain
[86]. However, they are characterized by computational drawbacks caused
by the eigen–decomposition of the graph Laplacian. Simplified approaches
are based on smooth reparametrization [87] or approximation of the spectral
filters by a Chebyshev expansion [88]. Finally, in Graph Convolutional Net-
works (GCNs) [89], filters are restricted to operate in a 1-hop neighborhood
of each node. Spatial methods, instead, directly exploit the graph topology,
without the need of an intermediate representation. These approaches differ
mainly in the definition of the aggregation operator used to compute the node
states, that must be able to maintain weight sharing properties and to process
nodes with different numbers of neighbors. The PATCHY-SAN [90] model
converts graph-structured data into a grid-structured representation, extract-
ing and normalizing neighborhoods containing a fixed number of nodes. In
[91] the model exploits a weight matrix for each node degree, whereas DCNNs
[92] compute the hidden node representation by convolving the input chan-
nels with power series of the transition probability matrix, learning weights
for each neighborhood degree. GraphSAGE [93] exploits different aggregation
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functions to merge the node neighborhood information. In the context of graph
classification tasks, SortPooling [94] uses a framework based on DGCNNs with
a pooling strategy, that performs pooling by ordering vertices. Finally, MPNN
by Gilmer [50, 51] (see Section 2.1.4) tries to unify all the previously described
models under a common framework.

4.1.2 The role of aggregation functions

All the models presented in the previous Section compute the node states car-
rying on an aggregation phase in which every neighbor contributes equally to
the state computation. Every direction is treated in the same way, and for this
reason these models are denoted as Isotropic GNNs. However, it is possible
to gain a directional structure adding edge features to the computation, but
this solution holds only if such features are available in the task at hand. An
interesting alternative solution is to let the model learn anisotropy from data,
in order to treat neighbors differently, as done in models like Graph Attention
Networks [95] and alternatives [96, 97].

A subsequent line of research focuses on the analysis of the expressive
capabilities of GNNs and their aggregation functions. The seminal work by
Xu et al. [2] paved the road to studies on the expressive power of GNNs
through the notion of graph isomorphism. The authors propose a model, the
Graph Isomorphism Network (GIN), having the same representational power
of the Weisfeiler-Leman Test [98]. The main intuition is based on the usage of
an injective aggregation function, e.g. the sum, which is able to distinguish and
devise elements belonging to a multiset (a set that allows multiple instances
for its elements). Conversely, other types of aggregation functions tend to
capture the proportion/distribution of elements of a given type (Mean) or
ignore multiplicities, reducing the multiset to a simple set (Max). However, the
WL-test itself is not a sufficient condition for two graphs being isomorphic, and
for this reason several other works try to capture higher-order graph properties
[99, 100].

Bearing in mind these findings, other approaches try to combine several
aggregation functions in order to devise a powerful representational scheme
[101].
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4.1.3 Other recent trends

The are multiple research directions in the context of Graph Representation
Learning. One of the biggest weaknesses of the early models was the lack
of a common benchmarking setting for performance evaluation [102], that re-
cent work tries to propose [103, 104]. Beside other approaches looking into
different mixed learning strategies (i.e. combining inductive and transductive
learning [105, 106]), there are other approaches trying to devise methods able
to scale to big real-world datasets (social networks, recommender systems)
[107, 108]. A very interesting work in this direction, Steady State Embedding
(SSE) [109], shares similar intuitions to those described in this Chapter. In-
deed, the authors prove that algorithms on graphs can be effectively learned
exploiting a constrained fixed-point formulation, solved via the Reinforcement
Learning policy iteration algorithm. The authors exploit this method for the
interleaved evaluation of the fixed point equation and the improvement of the
transition and output functions, resorting to ad-hoc moving average updates.

4.2 Constraint-based Propagation in Graph Neural
Networks

During the learning stage of the original GNN training algorithm [35], that
has been described in Section 2.1.4 and 2.2.1, convergence to the fixed point
(or of an approximation of it) of the state transition function is required at
each epoch of the learning procedure. The gradient computation requires to
take into account such relaxation procedure, by a BackPropagation schema
that involves the replicas of the state transition network exploited during the
iterative fixed point computation (unfolding). This is due to the fact that the
definition of the computational graph in GNNs is driven both by the input
graph topology and by the convergence procedure.

To briefly summarize, we denote the state transition function, applied to
a node v ∈ V , with:

fa,v = fa(x
(t)
ne[v], lne[v], lv, l(ne[v],v)|θfa) . (4.1)

Basically, the encoding phase, through the iteration of fa(), finds a solution to
the fixed point problem defined by the equality constraint between each node
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state and the way it is computed by the state transition function

∀v ∈ V, xv = fa,v. (4.2)

Therefore, we can think at the computational graph of GNNs as defining a set
of constraints among the state variables xv, v ∈ V and the state transition
functions.

This view of the learning process paves the way to the introduction of
similar intuition to the ones presented in Chapter 3, this time restricted to
the node state computation. The iterative encoding procedure itself can be
expressed via the unifying notion of constraint, making it possible to decouple
the node state computation from the convergence procedure.

We can consider a Lagrangian formulation of the learning problem by
adding free variables corresponding to the node states xv, such that the fixed
point is directly defined by the constraints themselves, as

∀v ∈ V, G (xv − fa,v) = 0, (4.3)

where G(x) is an ε-insensitive function (see Section 3.3.2) characterized by
G(0) = 0, such that the satisfaction of the constraints implies the solution of
Eq. (4.2). The original formulation of the problem would require ε = 0, but by
setting ε to a small positive value it is possible to obtain a better generalization
and tolerance to noise. In this way, the convergence procedure is translated
into the enforcement of the constraint expressed in Eq. (4.3). Therefore,
the fulfillment of such constraints fosters the diffusion of information in the
neighborhood of each node.

4.2.1 A Local Learning formulation

In the following, for simplicity, we will refer to a node-focused task, such that
for some (or all) nodes v ∈ S ⊆ V of the input graph G, a target output yv
is provided as a supervision1. If L(fr(xv | θfr), yv) is the loss function used to

1For the sake of simplicity we consider only the case when a single graph is provided
for learning. The extension to more graphs is straightforward for node-focused tasks, since
they can be considered as a single graph composed by the given graphs as disconnected
components.
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measure the target fitting approximation for node v ∈ S, the formulation of
the learning task is:

min
θfa ,θfr ,X

∑︂
v∈S

L(fr(xv | θfr), yv)

subject to G (xv − fa,v) = 0, ∀ v ∈ V, (4.4)

where we already defined θfa and θfr as the weights of the MLPs implementing
the state transition function and the output function, respectively, while X =

{xv : v ∈ V } is the set of the newly introduced free state variables.
This problem statement implicitly includes the definition of the fixed point

of the state transition function since for each solution in the feasible region the
constraints are satisfied, and hence the learned xv are solutions of Eq. (4.2).
The constrained optimization problem of Eq. (4.4) can be faced in the La-
grangian framework (see Section 2.4) by including a Lagrange multiplier λv

for each constraint, such that the Lagrangian function L(θfa , θfr , X,Λ) is de-
fined as:

L(θfa , θfr , X,Λ) =
∑︂
v∈S

[L(fr(xv | θfr), yv) + λvG (xv − fa,v)] , (4.5)

where Λ is the set of the |V | Lagrangian multipliers. Hence, we can find the
solution of the learning problem by optimizing an unconstrained optimization
index and searching for saddle points in the adjoint space (θfa , θfr , X,Λ),
following the Basic Differential Multiplier Method [1], introduced in Section
2.6. In detail, we aim at solving

min
θfa ,θfr ,X

max
Λ

L(θfa , θfr , X,Λ), (4.6)

that can be approached with gradient descent-based optimization with respect
to the variables θfa , θfr , X, and gradient ascent with respect to the Lagrange
multipliers Λ (see Section 2.6). Interestingly, the gradient can be computed
locally to each node, given the node-related variables and those of the neigh-
boring nodes. In fact, the derivatives of the Lagrangian with respect to the
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involved parameters are2:

∂L
∂xv

= L′f ′
r,v + λvG′

v(1− f ′
a,v)−

∑︂
w:v∈ne[w]

λwG′
wf

′
a,w (4.7)

∂L
∂θfa

= −
∑︂
v∈S

λvG′
vf

′
a,v (4.8)

∂L
∂θfr

=
∑︂
v∈S

L′f ′
r,v (4.9)

∂L
∂λv

= Gv (4.10)

where fa,v is defined in Eq. (4.1), f ′
a,v is its derivative3, fr,v = fr(xv | θfr),

f ′
r,v is its derivative (with respect to θfr), Gv = G (xv − fa,v) and G′

v is its
first derivative, and, finally, L′ is the first derivative of L. Being fa and fr
implemented by feedforward neural networks, their derivatives are obtained
easily by applying a classic BackPropagation scheme, in order to optimize
the Lagrangian function in the descent-ascent procedure, aiming at reaching
a saddle point. The decomposition of the convergence procedure into a con-
straint satisfaction process and the locality of computations represent two big
advantages with respect to the original formulation of the problem.

4.2.2 A mixed optimization strategy

A noticeable difference with respect to the Local Propagation algorithm pre-
sented in Chapter 3 is that, even if the proposed formulation adds the free
state variables xv and the Lagrange multipliers λv, v ∈ V , there is no signif-
icant increase in the memory requirements. Indeed, since the state variables
also need to be memorized in the original formulation of GNNs, the learning
problem is lifted just by a single Lagrange multiplier for each node.

This novel approach in training Graph Neural Network has several in-
teresting properties. The learning algorithm is based on a mixed strategy
characterized by the following two properties.

2When parameters are vectors, the reported gradients should be considered element-wise.
3In Eq. (4.7) and Eq. (4.8) such derivative is computed with respect to the same

argument as in the partial derivative on the left side.
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1. BackPropagation is used to efficiently update the weights of the neural
networks that implement the state transition and output functions.

2. The diffusion mechanism evolves gradually by enforcing the convergence
of the state transition function to a fixed point by virtue of the con-
straints.

This introduces a significant difference with respect to running an iterative
procedure at each epoch and, only afterwards, applying the backward stage of
BackPropagation to update the weights of fa and fr, as done in classic GNNs.
In the proposed scheme, both the neural network weights and the node state
variables are simultaneously updated by gradient-based rules. The learning
proceeds by jointly updating the function weights and by diffusing information
among the nodes, through their state, up to a stationary condition where
both the objective function is minimized and the state transition function has
reached a fixed point of the diffusion process. This also introduces a strong
simplification in the way the algorithm can be implemented in modern software
libraries that commonly include automatic gradient computation. Given the
fact that the Lagrangian function describes both the loss function optimization
and the information diffusion inside the processed graphs, we denote our model
with the name Lagrangian Propagation GNN (LP-GNN).

As it will be further investigated in Section 4.4.4, in the proposed algo-
rithm, the diffusion process is turned itself into an optimization process that
must be carried out both when learning and when making predictions. As a
matter of fact, inference itself requires the diffusion of information through
the graph, that, in our case, corresponds with satisfying the constraints of
Eq. (4.3). For this reason, the testing phase requires a (short) optimization
routine to be carried out, that simply looks for the satisfaction of Eq. (4.3)
for test nodes, and it is implemented using the same code that is used to opti-
mize Eq. (4.6), avoiding to update the state transition and output functions.
This is deeply different both from original GNNs [53], where it is realized by
the unrolling of the transition function, and from Graph Convolutional Net-
works (GCN) [89] or other MPNNs, where it is embedded into the layer-wise
projection.
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4.2.3 LP-GNN Complexity analysis

Common graph models exploit synchronous updates among all nodes and mul-
tiple iterations/layers for the node state embedding, with a computational
complexity for each parameter update O(T (|V |+ |E|)), where T is the num-
ber of iterations, |V | the number of nodes and |E| the number of edges. By
simultaneously carrying on the optimization of neural models and the diffu-
sion process, our scheme relies only on 1-hop neighbors for each parameter
update, hence showing a computational cost of O(|V |+ |E|). From the mem-
ory cost point of view, the persistent state variable matrix requires O(|V |)
space. However, it represents a much cheaper cost than most of GNN mod-
els, usually requiring O(T |V |) space. In fact, those methods need to store
all the intermediate state values of all the iterations, for a latter use in back-
propagation.

4.3 Deep LP-GNNs

The GNN computation may exploit a Multi-Layer Neural Network with any
number of hidden layers to implement the state transition function fa of
Eq. (4.1). By using more layers in this network, the model is able to learn
more complex functions to diffuse the information on the graph, but the ad-
ditional computation is completely local to each node. A different approach
to yield a deep structure is to add layers to the state computation mecha-
nism, in order to design a Layered GNN [110]. Basically, a set of K states
{xv,k, k = 0, . . . ,K − 1} is computed for each node v ∈ V . The state of the
first layer, xv,0, is computed by Eq. (4.1) and it becomes a labeling of node
v that can be used to compute the state of the node at the following layer,
i.e., xv,1. More generally, at layer k + 1 we have the use of the node label
lk+1
v = xv,k. A different state transition function fk

a may be exploited at each
layer. Formally, the computation is performed by the following schema for
each layer k > 0:

x
(t)
v,k = fk

a

Ä
x
(t−1)
ne[v],k, x

(t−1)
v,k , xv,k−1 | θfk

a

ä
, (4.11)

whereas the states of the first layer xv,0 are computed by Eq. (4.1). The model
outputs are computed by applying the output network fr to the states xv,K−1
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available at the last layer. The proposed implementation is a simplification of
the more general model that may process the neighboring node and arc labels
lne[v], l(v,ne[v]) (and also additional node labels to augment lv) again at each
layer4.

Following the original GNN computation schema, the states need to be se-
quentially computed layer-by-layer applying the relaxation procedure to reach
the fixed point: when moving to layer k the states computed by the previous
layer k−1 are considered constant inputs, as shown in Eq. (4.11). As a result,
Layered GNNs may be computationally demanding since they require to com-
pute the fixed point for each layer in the forward phase, and to backpropagate
the information through the resulting unfoldings in the backward phase.

In order to overcome these issues, we can exploit the locality in the com-
putations of the proposed Lagrangian formulation by considering the state
variables xv,k at each node and layer as free variables. Once we introduce
new layer-wise constraints with the same structure of Eq. (4.3), the proposed
learning problem can be generalized to multiple layers as follows:

min
Θfa ,θfr ,X

∑︂
v∈S

L(fr(xv,K−1 | θfr), yv)

subject to G(xv,k − fk
a,v) = 0, ∀ v ∈ V, ∀ k ∈ [0,K − 1] (4.12)

where Θfa =
î
θf0

a
, . . . , θfK−1

a

ó
collects the weights of the neural networks im-

plementing the transition function of each layer, and X collect the states xv,k
for each node and layer. The notation fk

a,v is a straightforward extension of
the one proposed in Eq. (4.1), taking into account the schema defined by
Eq. (4.11), where fk

a,v, with k > 0, is function of xk−1
v . In this context, f0

a,v

corresponds to the original definition. Our approach not only allows us to
jointly optimize the weights of the networks and diffuse the information along
the graph, but also to propagate the information through the layers, where,
for each of them, a progressively more informed diffusion process is carried on
and optimized.

4The model can be also extended by considering an output function fk
r for each layer

such that the output yn,k−1 at layer k−1 is concatenated to xv,k−1 for each node as input for
the following layer. These intermediate outputs can be subject to the available supervisions
[110].
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4.3.1 Deep LP-GNN Complexity analysis

The introduction of the layered computational structure empowers the repre-
sentational capability of the model at the expense of an increased complexity.
Given a K-layer LP-GNN, the computational complexity for each parameter
update is O(K(|V |+ |E|)), where |V | the number of nodes and |E| the number
of edges. The persistent state variable matrix requires O(K|V |) space.

4.4 Experiments

We implemented the algorithm described in the previous sections using Ten-
sorFlow5. The implementation exploits the TensoFlow facilities to compute
the gradients (Eq. (4.7)-(4.10)), while we updated the parameters of the prob-
lem of Eq. (4.6) using the Adam optimizer [111]. For the comparison with
the original GNN model, we exploited the GNN Tensorflow implementation6

introduced in [106].

4.4.1 Qualitative analysis

When dealing with graphs, a very interesting analysis [89] consists in having a
look at how latent representations of nodes (states) evolve during the learning
process. Indeed, when the dependence of the state transition function on the
available node-attached features (l0v) is reduced or completely removed, the
algorithm can only rely on the topology of the graph to perform the classifica-
tion task at hand. In this setting, the states are continuous representations of
topological features of the nodes in the graph and the LP-GNN model would
implicitly learn a metric function in this continuous space. For this reason, we
would expect that nodes belonging to the same class are placed close to each
other in the embedding space.

In order to perform this evaluation, we exploit the simple and well-known
Zachary Karate Club dataset [112]. The data was collected from the members
of a university karate club by Wayne Zachary in 1977. Each node represents

5https://www.tensorflow.org
6The framework is available at https://github.com/mtiezzi/gnn. The documentation

is available at http://sailab.diism.unisi.it/gnn/

https://www.tensorflow.org
https://github.com/mtiezzi/gnn
http://sailab.diism.unisi.it/gnn/
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Figure 4.1: The karate club dataset. This is a simple and well-known dataset
exploited to perform a qualitative analysis of the behaviour of our model.
Nodes have high intra-class connections and low inter-class connections. Each
color is associated to a different class (4 classes).

a member of the club, and each edge represents a tie between two members.
There are 34 nodes, connected by 154 (undirected and unweighted) edges.
Every node is labeled by one out of four classes, obtained via modularity-
based clustering (see Figure 4.1).

We trained a layered LP-GNN with three state layers (K = 3). In order
to visualize the node states and how they change over time, we set the state
dimension of the last layer to 2 units and we used a shallow softmax regressor
as output function, to force a linear separation among classes. Moreover,
node-attached features of the given data were totally removed in order to
force the algorithm to exploit only structural properties in the solution of
the classification task. Figure 4.2 shows how the node states evolve over
time, starting from an initialization composed of zero-only states (i.e. node
states are initialized to a zero value). During training, they move progressively
toward four distinct areas of the 2D embedding space, one for each class. Since
features of nodes were removed, the distinct areas of the space group nodes
only with similar topological features.
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Figure 4.2: Evolution of the node state embeddings at different stages of
the learning process: beginning, after 200 epochs and at convergence. We are
not exploiting any node-attached features from the available data, so that the
plotted node representations are the outcome of the diffusion process only,
which is capable of mapping the topology of the graph into meaningful la-
tent representations. Each node is represented with the color of the given
corresponding class (ground truth), while the four background colors are the
predictions of the output function learned by our model. The model learns
node state embeddings that are linearly separated with respect to the four
classes.

4.4.2 Artificial Tasks

We consider the two tasks of subgraph matching and clique localization. These
tasks represent different challenges for the proposed model. We first describe
the main features of the considered tasks, and, afterward, we describe the
experimental results.

Table 4.1: The considered variants of the G function. By introducing ε-
insensitive constraint satisfaction, we can inject a controlled amount (i.e. ε)
of tolerance of the constraint satisfaction into the hard-optimization scheme.

Function lin lin-ε abs abs-ε squared
G(x) = x max(x, ε)−max(−x, ε) |x| max(|x| − ε, 0) x2

Unilateral × × ✓ ✓ ✓
ε-insensitive × ✓ × ✓ ×
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Subgraph Matching Given two graphs G and S such that |S| ≤ |G|, the
subgraph matching problem consists in finding the nodes of a subgraph Ŝ ⊂ G

which is isomorphic to S. The task is that of learning a function τS , such that
τS(G,n) = 1, n ∈ V , when the node n belongs to the given subgraph S,
otherwise τS(G,n) = 0. The target subgraph S is predefined in the learning
phase by providing examples of graphs G that contain S (the nodes of G that
define the subgraph S have a supervision equal to 1). The problem of finding
a given subgraph is common in many practical problems and corresponds, for
instance, to finding a particular small molecule inside a greater compound.
An example of a subgraph structure is shown in Figure 4.3. The dataset that
we considered is composed of 100 different graphs, each one having 7 nodes.
The number of nodes of the target subgraph S is instead 3.

Target Subgraph

Figure 4.3: An example of a subgraph matching problem, where the graph
with the blue nodes is matched against the bigger graph.

Clique localization A clique is a complete graph, i.e. a graph in which each
node is connected with all the others. In a network, overlapping cliques (i.e.
cliques that share some nodes) are admitted. Clique localization is a particular
instance of the subgraph matching problem, with S being complete. However,
the several symmetries contained in a clique makes the graph isomorphism test
more difficult. Indeed, it is known that the graph isomorphism has polynomial
time solutions only in absence of symmetries. A clique example is shown in
Figure 4.4. In the experiments, we consider a dataset composed by graphs
having 7 nodes each, where the dimension of the maximal clique is 3 nodes.
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Table 4.2: Accuracies on the artificial datasets, for the proposed model (La-
grangian Propagation GNN - LP-GNN) and the standard GNN model for
different settings.

Model
Subgraph Clique

G ε Acc(avg) Acc(std) Acc(avg) Acc(std)

LP-GNN

abs-ε
0.00 96.25 0.96 88.80 4.82
0.01 96.30 0.87 88.75 5.03
0.10 95.80 0.85 85.88 4.13

lin-ε
0.00 95.94 0.91 84.61 2.49
0.01 95.94 0.91 85.21 0.54
0.10 95.80 0.85 85.14 2.17

squared - 96.17 1.01 93.07 2.18

GNN [53] - - 95.86 0.64 91.86 1.12

Figure 4.4: An example of a graph containing a clique. The blue nodes
represent a fully connected subgraph of dimension 4, whereas the red nodes
do not belong to the clique.

We designed a batch of experiments on these two tasks aimed at vali-
dating our simple local optimization approach to constraint-based graph net-
works. In particular, we want to show that our optimization scheme can
learn better transition and output functions than the corresponding GNN of
[53, 106]. Moreover, we want to investigate the behaviour of the algorithm for
different choices of the function G(x), i.e. when changing how we enforce the
state convergence constraints. In particular, we tested functions with different
properties: ε-insensitive functions, i.e G(x) = 0, ∀x : −ε ≤ x ≤ ε, unilateral
functions, i.e. G(x) ∈ R+, and bilateral functions, i.e. G(x) ∈ R (a G func-
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tion is either unilateral or bilateral). Table 4.1 reports the definition of the
considered functions showing if they are ε-insensitive, bilateral or unilateral.

Following the experimental setting of [53, 106], we exploited a training,
validation and test set having the same size, i.e. 100 graphs each. We tuned the
hyperparameters on the validation data, by selecting the node state dimension
from the set {5, 10, 35}, the dropout drop-rate from the set {0, 0.7}, the state
transition function from {f (SUM)

a,v , f
(AVG)
a,v }, where

f (SUM)
a,v =

∑︂
u∈ne[v]

h(xu, lu, l(v,u), l(u,v), xv, lv | θh)

f (AVG)
a,v = 1

|ne[v]|

∑︂
u∈ne[v]

h(xu, lu, l(v,u), l(u,v), xv, lv | θh).

bearing in mind the various capabilities of the Sum and Mean aggregators,
outlined in Section 4.1.2. The number of hidden units was selected from
{5, 20, 50}. The learning rate for parameters θfa and θfr is selected from the
set {10−5, 10−4, 10−3}, and the learning rate for the variables xv and λv from
the set {10−4, 10−3, 10−2}.

We compared our model with the equivalent GNN in [53], with the same
number of hidden neurons in the fa and fr functions. Results are presented
in Table 4.2. On average, LP-GNN perform favourably than vanilla GNN
when the G function is properly selected. Constraints characterized by uni-
lateral functions usually offer better performances than equivalent bilateral
constraints. This might be due to the fact that keeping constraints positive
(as in unilateral constraints) provides a more stable learning process. More-
over, smoother constraints (i.e squared) or ε-insensitive constraints tend to
perform slightly better than the other versions, in line with the experimental
findings of Local Propagation (Section 3.5). This can be due to the fact that as
the constraints move closer to 0 they tend to give a small or null contribution,
for squared and abs-ε respectively, acting as regularizers.

4.4.3 Graph Classification

Graph-focused tasks consists in finding a representation of the current input
graph, yielding a single output, as stated by Eq. (2.11b). To extract this
unique embedding from the representations encoded by all the states available
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Table 4.3: Average and standard deviation of the classification accuracy on
the graph classification benchmarks, evaluated on the test set, for different
GNN models. The proposed model is denoted as LP-GNN and it is evalu-
ated in two different configurations. LP-GNN-Single exploits only one layer
of the diffusion mechanism, while LP-GNN-Multi exploits multiple layers as
described in Section 4.3. It is interesting to note that, even if LP-GNN-Single
exploits only a shallow representation of nodes, it performs, on average, on-
par with respect to other state-of-the-art models. Finally, the LP-GNN-Multi
model performs equally to or better than most of the competitors on most of
the benchmarks.

Datasets IMDB-B IMDB-M MUTAG PROT. PTC NCI1
# graphs 1000 1500 188 1113 344 4110
# classes 2 3 2 2 2 2
Avg # nodes 19.8 13.0 17.9 39.1 25.5 29.8

DCNN 49.1 33.5 67.0 61.3 56.6 62.6
PatchySan 71.0 ± 2.2 45.2 ± 2.8 92.6 ± 4.2 75.9 ± 2.8 60.0 ± 4.8 78.6 ± 1.9
DGCNN 70.0 47.8 85.8 75.5 58.6 74.4
AWL 74.5 ± 5.9 51.5 ± 3.6 87.9 ± 9.8 – – –
GraphSAGE 72.3 ± 5.3 50.9 ± 2.2 85.1 ± 7.6 75.9 ± 3.2 63.9 ± 7.7 77.7 ± 1.5
GIN 75.1 ± 5.1 52.3 ± 2.8 89.4 ± 5.6 76.2 ± 2.8 64.6 ± 7.0 82.7 ± 1.7
GNN 60.9 ± 5.7 41.1 ± 3.8 88.8 ± 11.5 76.4 ± 4.4 61.2 ± 8.5 51.5 ± 2.6
LP-GNN-Single 71.2 ± 4.7 46.6 ± 3.7 90.5 ± 7.0 77.1 ± 4.3 64.4 ± 5.9 68.4 ± 2.1
LP-GNN-Multi 76.2 ± 3.2 51.1 ± 2.1 92.2 ± 5.6 77.5 ± 5.2 67.9 ± 7.2 74.9 ± 2.4

at each node, we implemented the following version of the readout function:

yG = f (SUM)
r ({xv, v ∈ V } | θfr) = fr

(︄∑︂
v∈V

fa,v | θfr

)︄
. (4.13)

We selected 6 datasets that are popular for benchmarking GNN models. In
particular, four of them are from bioinformatics (MUTAG, PTC, NCI1, PRO-
TEINS) and two from social network analysis (IMDB-BINARY, IMDB-MULTI)
[113].

The MUTAG dataset is composed of 188 mutagenic aromatic and het-
eroaromatic nitro compounds, having 7 discrete labels. PTC is characterized
by 344 chemical compounds belonging to 19 discrete labels, reporting the car-
cinogenicity for male and female rats. The National Cancer Institute (NCI)
made publicly available the NCI1 dataset (4100 nodes), consisting of chemi-
cal compounds screened for their ability to suppress or inhibit the growth of
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a panel of human tumor cell lines, having 37 discrete labels. Nodes in the
PROTEINS dataset represent secondary structure elements (SSEs), with an
edge connecting them if they are neighbors in the amino-acid sequence or in
the 3D space. The set has 3 discrete labels, representing helix, sheet or turn.
Regarding the social network datasets, IMDB-BINARY is a movie collabora-
tion dataset collecting actor/actress and genre information of different movies
extracted from the popular site IMDB. For each graph, nodes represent ac-
tors/actresses, connected with edges if they appear in the same movie. Each
graph is derived from a pre-specified movie category, and the task is to clas-
sify the genre it is derived from. In the IMDB-B dataset, the collaboration
graphs are labelled with the two genres Action and Romance. The multi-class
version of this dataset is IMDB-MULTI, which is composed by a balanced set
of graphs belonging to the Comedy, Romance and Sci-Fi labels.

The main purpose of this kind of experiments is to show the ability of the
model to strongly exploit the graph topology and structure. In fact, whilst
in the bioinformatics graphs the nodes have categorical input labels (l0v) (e.g.
atom symbol), in the social networks sets there are no input node labels. In
this case, we followed what has been recently proposed in [2], i.e. using one-
hot encodings of node degrees. Dataset statistics are summarized in Table
4.3.

We compared the proposed Lagrangian Propagation GNN (LP-GNN) sche-
me with some of the state-of-the-art neural models for graph classification,
such as Graph Convolutional Neural Networks. In particular, the models used
in the comparison are: Diffusion-Convolutional Neural Networks (DCNN) [92],
PATCHY-SAN [90], Deep Graph CNN (DGCNN) [94], AWL [114], Graph-
SAGE [93], GIN-GNN [2], original GNN [53]. For all the GNN-like models
there are a number of layers equal to 5. We compared also two versions of
our scheme: LP-GNN-Single, which is a shallow architecture with K = 1,
and LP-GNN-Multi, which is a layered version of our model, as described in
Section 4.3. It is important to notice that differently from LP-GNN-Single, all
the convolutional models use a different transition function at each layer. This
fact entails that, at a cost of a much larger number of parameters, they have
a much higher representational power. Apart from original GNN, we report
the accuracy as available in the referred papers.
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We followed the evaluation setting of [90]. In particular, we performed
10-fold cross-validation and reported both the average and standard deviation
of the accuracies across the 10 folds within the cross-validation. The stopping
epoch is selected as the epoch with the best cross-validation accuracy averaged
over the 10 folds. We tuned the hyperparameters by searching: (1) the number
of hidden units for both the fa and fr functions from the set {5, 20, 50, 70, 150};
(2) the state transition function from {f (SUM)

a,v , f
(AVG)
a,v }; (3) the dropout ratio

from {0, 0.7}; (4) the size of the node state xv from {10, 35, 50, 70, 150}; (5)
learning rates for both the θfa , θfr , xv and λv from {0.1, 0.01, 0.001}.

Results are reported in Table 4.3. As previously stated and as it will
be further discussed in Section 4.4.4, the LP-GNN-Single model offers perfor-
mances that, on average, are preferable or on-par to the ones obtained by more
complex models that exploit a larger amount of parameters. Finally, the LP-
GNN-Multi model performs equally to or better than most of the competitors
on most of the benchmarks.

4.4.4 Depth vs Diffusion

It is interesting to note that for current convolutional GNN models [92, 90, 94,
114, 2, 93] the role of the architecture depth is twofold. First, as it is common
in deep learning, depth is used to perform a multi-layer feature extraction
of node inputs, providing more and more representational power as depth
increases. Secondly, it allows node information to flow through the graph fos-
tering the realisation of a diffusion mechanism. Conversely, our model strictly
splits these two processes. Diffusion is realised by looking for a fixed point
of the state transition function, while deep feature extraction is realised by
stacking multiple layers of node states, enabling a separate diffusion process
at each layer. We believe this distinction to be a fundamental ingredient for a
clearer understanding of which mechanism, between diffusion and node deep
representation, is concurring in achieving specific performances.

In the previous section, we showed indeed that our diffusion mechanism
paired only with a simple shallow representation of nodes (reffered as LP-GNN-
Single) is sufficient, in most cases, to match performances of much deeper and
complex networks. In this section, we want to investigate further this aspect.
In particular, we focused on the IMDB-B dataset. The choice of this dataset
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has to be attributed to the fact that it contains no node features. In this way,
as done in Section 4.4.1, we can assure that the only information available to
solve the task is the topological one. Other datasets, for example the simpler
MUTAG, reach high level accuracies even without the structural information
of the graph, by only exploiting node features.

We compared our model with the state-of-the-art GIN [2] model. For both
models, we tested four architectures with {1,2,3,5} GNN state layers. We want
to show that in very shallow GNNs (one layer) our model can still perform
fairly well, since the diffusion process is independent from the depth of the
network. On the other side, the GIN model, as other graph convolutional
networks, needs deep architectures with a larger number of parameters for
the diffusion process to take place. We believe this to be a big advantage
of our model w.r.t. convolutional architectures in all the cases where high
representational power is not required.

Results are shown in Table 4.4. It can be noted that this task can reach
the 96% of the top accuracies (75.1 and 76.2, respectively) using only 2 lay-
ers of GNN, for both the competitors. The great difference between the two
approaches becomes clear in the architecture composed by only 1 layer. In
this setting, the GIN model, like all the other convolutional architectures, can
only exploit information contained in direct 1-hop neighbors, reaching a 52%
accuracy (which is close to random in a binary classification task). On the
contrary, our model can reach a 71.2% of accuracy (93% of the maximum
accuracy). This is a signal of the fact that convolutional architectures need a
second layer (and thus a larger number of parameters) mainly to perform dif-
fusion at 2-hop neighbors rather than for exploiting a higher representational
power.

4.5 Discussion

In This Chapter we proposed an approach that simplifies the learning proce-
dure of GNN models, making them more easily implementable and more effi-
cient. The formulation of the learning task is devised following the principles
of locality and the computational graph decomposition into local subparts con-
nected via constraints, avoiding the unfolding of the state convergence proce-
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Evaluation Model
Number of State Layers

1 2 3 5

Absolute
GIN [2] 52 72.6 72.7 75.1
LP-GNN 71.2 73.7 73.9 76.2

Relative
GIN [2] 69 96 97 100
LP-GNN 93 96 97 100

Table 4.4: Depth vs Diffusion analysis. Absolute (top rows) and Relative
(bottom rows) test accuracies on the IMDB-B dataset when the number of
GNN state layers varies from 1 to 5 (i.e. K ∈ [1, 5]. Here, the Relative
accuracy represents the percentage of the current accuracy with respect to the
maximum obtained performances. The state-of-the-art GIN [2] model and our
proposed approach are compared.

dure. Indeed, the defined constrained optimization problem allows us to avoid
the explicit computation of the fixed point, that is needed to encode the graph.
The proposed framework defines how to jointly optimize the model weights
and the state representations without the need of separate optimization stages.
For this reason, our model can be easily implemented using modern machine
learning libraries since it is completely based on BackPropagation. The con-
strained representation of the learning procedure can be replicated recursively
multiple times, thus introducing different levels of abstraction and different
representations, similarly to what happens in multi-layer networks.

We proposed and investigated constraining functions that allow the model
to modulate the effects of the diffusion process. Our experiments have shown
that the proposed approach leads to results that compare favourably with the
ones of related models, and we investigated the effects of the constraining func-
tions. Interestingly, the proposed constraint-based scheme can be extended to
all the other methods proposed in the literature that exploit more sophisti-
cated architectures or aggregation schemes. In such a way, the advantages
brought by powerful aggregation schemes and the capability to carry on a
diffusion process involving the whole graph, could be intermixed achieving
performance improvements.

We will highlight some future research lines in Chapter 6.





Chapter 5

Feature learning in video streams

One of the key components of complex cognitive systems is their ability to
continuously process streams of data, in a real-time manner. Following a
conversation, reading a paragraph of a book or looking at the world surround-
ing us, are activities linked by their sequential nature and characterized by a
unique temporal direction. In experiencing such activities, the human brain
processes a continuous flow of information, where the local statistics attached
to the currently processed pattern rely heavily on the preceding one, and it is
highly interleaved with the pattern that comes afterwards, along this temporal
direction. The complexity of the cognitive mechanisms derives from a contin-
uous learning process that happens in this scenario. Indeed, the human brain
is capable of taking advantage of this context carrying on a lifelong process
of learning, where experience and notions are accumulated and enriched over
time, leveraging the continuity and coherence present in such data stream.
Moreover, intelligent agents do not need an always available oracle ready to
supervise and correct their errors. Supervisions are instead sparse in time,
and even without any hints or suggestion agents are capable to grasp relevant
features. Such consideration holds for various tasks, but here we will consider
the human visual system as a case study [115].

Conversely, the standard Deep Learning training procedure in Computer
Vision tasks is based on a heavily supervised scenario, where batches of shuffled
and unrelated frames (e.g. ImageNet [116]) are exploited in order to train
neural models. Despite the fact that the recent literature is moving towards
the analysis of video streams [117, 118], or computer simulations of the real
world [119, 120, 121], these solutions still heavily rely on densely annotated
frames (in the case of Video Object detection or segmentation) or on the
evaluation of policies (Navigation, Visual QA).

However, there is an increasing interest in grasping more powerful cogni-
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tive capabilities. The lines of research on Continual and Lifelong Learning
[122] represent a step towards models able to act in an online manner [123],
overcoming difficulties such as the catastrophic forgetting [36] of previously
learned tasks, solely based on parsimonious principles.

Unsupervised Learning, on the other hand, tackles the problem of the need
of massive supervision. A proper artificial cognitive model should have also the
ability to reason on the whole input state without the need of any auxiliary
supervised information. Several popular methods try to discover an useful
representation in an unsupervised manner. Independent component analysis
[124], Self-Organizing Maps [125], neural Clustering techniques [126] or self-
supervision [127, 128] represent some of the techniques used in Unsupervised
Learning. Another interesting approach follows the InfoMax principle [129],
a feature learning technique based on the maximization of the transferred
information, in terms of Mutual Information (MI), among inputs and outputs
of neural networks. The resurgence of such techniques, allowed by scalable
approximations [130, 131], is having an impact on this research field.

In this Chapter, we focus on unsupervised learning for transferring visual
information in a truly online setting by using a computational model that is
inspired to the principle of least action in physics, denoted as the Cognitive
Action Laws (CALs) [132]. The maximization of the mutual information is
carried out by a temporal process that yields online estimation of the entropy
terms. One of the key issues with MI maximization over time is the fact that
stochastic updates of the model parameters do not keep track of the entropy of
the output space due to the data processed so far, leading to poorly informed
updates. We investigate the case in which the global changes in the entropy
of the output space are approximated by introducing a specific constraint.

In the context of this dissertation, the entropy approximations yielded at
each time instant are regarded as components of the same temporal computa-
tional model. The temporally local entropy approximations are subcomponents
of the overall architecture, put into relation by soft-constraints that enforce a
temporal estimate that is not limited to the current frame. We intersect these
ideas with the recent human-like attention model of [133], that has shown
state-of-the art results in human visual scanpath estimation. The focus of
attention implements a filtering procedure on the input video stream, allow-



5.1. Preliminaries and Related Work 89

ing the system to deal only with those areas that would attract the human
attention.

5.1 Preliminaries and Related Work

This section will give some background notions on several research directions
and related works in the context of unsupervised learning and learning over
time.

5.1.1 Lifelong learning over time

Continual lifelong learning [122] represents a long-standing challenge for the
creation of intelligent artificial agents. This term refers to the ability to learn
over time grasping new knowledge while retaining previously learned notions.
The simplest approach to learn new knowledge, i.e. retraining the neural
model parameters with the novel data, in fact suffers from the issue of catas-
trophic forgetting. The new information causes the parameters to change in
such a way that patterns belonging to the older data may be no more correctly
classified. Many techniques have been devised in order to deal with this issue,
many of them inspired by the stability-plasticity dilemma [134]. In order to be
able to learn over time and overcome catastrophic forgetting, a system must be
capable to balance between the integration of novel information, hence being
plastic, and the retention of previously learned knowledge, hence being stable.

Machine learning approaches to this task involve dynamical architectural
properties, Complementary Learning Systems or Memory Replay (see [122]
for a complete review) as well as methods inspired by parsimonious principles
[134] and regularization approaches [135] (for instance, Slow Feature Analysis
[136]).

5.1.2 Unsupervised Learning by Mutual Information Maxi-
mization

The goal of Unsupervised Learning is to discover an useful representation of
unlabeled data available at-hand, which is often gained employing a learnable
function implemented by an ANN. Features developed in an unsupervised
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manner can be considered by themselves meaningful and even capable to re-
duce the burden and ease supervised training in downstream tasks.

In this direction, the information-based topic of Mutual Information (MI)
maximization has recently attracted the attention of several researches [130,
131, 137, 138, 139]. These works are inspired by the InfoMax principle [129],
that can be briefly described as the search of a representation g(x) of the input
pattern x such that the MI between the input and the representation, that can
be interpreted as the computed symbols, is maximized. Indeed, the encoder
g(x) must act in such a way that the information transfer between its inputs
and the generated symbols is maximized. The Mutual Information I(Y,X)

between two random variables X and Y measures the reduction of uncertainty
about Y by virtue of the observation on the value of X.

Given this definition, we can formally express the MI as

I(Y,X) = H(Y )−H(Y |X) (5.1)

where H(·) denotes the entropy of a random variable, which measures the
uncertainty of a probability distribution defined on the realizations x of a
random variable X1, H(X) = −

∑︁
x p(x) log(p(x)).

Most of the recent works are based upon customized MI-based criteria
to learn representations for downstream tasks, in the setting of unsupervised
image representation. Moreover, the approaches of [131, 137] are based on
surrogate functions that loosely approximate [139] the MI formulation, that is
very difficult to compute in the context of continuous random variables and
high dimensional settings.

The common approach shared by these works can be conceptually summa-
rized with the following problem setup, as highlighted in [139]. The random
variable X represents the input image, while we denote with X(1) and X(2) two
different views of the image (for instance two subparts or different augmenta-
tion/image modalities). The problem consists in maximizing an estimated MI
IEST (·) between the representations of such view:

max
g1,g2

IEST

(︁
g1(X

(1)), g2(X
(2))
)︁

(5.2)

1Random variables are denoted using upper case letters (X,Y ) while we use lower case
letters (x, y) for their realizations.
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which is a lowerbound on the InfoMax [129] objective maxg I(X, g(X)).
Several works can be described under this common setting.

DeepInfomax [131] empirically proves that maximizing the MI between
the complete input X and its representation g(X) is often insufficient for
learning useful representations. Hence, the authors propose the maximization
of an approximated continuous MI, obtained through an approach inspired by
MINE [130], between global features extrapolated from the image (g1(X(1)))
and local features obtained from image patches (g2(X(2))). This encourages
the encoder g(·) to grasp the useful information present in all locations of the
input image, with the hope of being globally relevant. The MI estimation is
made easier by the fact that the views lie on lower dimensional spaces with
respect to the original image.

Contrastive Predictive Coding (CPC) [138] maximizes the MI between
global and local representations, enriched with an ordered autoregression over
local features. In particular, aggregated features are obtained from an ordered
sequence of t patches. Then, the MI index between such aggregated statistics
and the representation of a local feature not processed yet (at location t+ k,
hence the name predictive) is maximized. In reference to Eq. (5.2), here X(1)

corresponds to the first t patches, and X(2) to the patch at position t+ k.
Given the burden of computing the continuous MI index, the methods pre-

sented up to now heavily rely on the estimator IEST (·), that deals with lower
bounds of the real MI [139]. In the remaining of the Chapter, we will instead
consider the discrete MI index, that, for instance, has been previously used
as a criterion to relate different views of the input data [140] or in clustering
[141].

The information transferred by multi-layer networks is discussed also in
the context of the popular information bottleneck principle by Naftali Tishby
and other authors as a mean to study deep network internal dynamics [142,
143, 144].

5.1.3 Cognitive Action Laws: Learning Over Time

The methods considered in Section 5.1.2 deal with MI maximization on image
representation tasks, leveraging batches of data that are commonly processed
in an offline manner using stochastic updates of the model parameters, peri-
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odically shuffling the available samples.
The main goal of this Chapter is Unsupervised learning from continuous

visual streams, that is indeed a challenging problem that cannot be naturally
and efficiently managed in the aforementioned batch-mode setting of compu-
tation, as highlited in Section 5.1.1.

Recent studies, inspired by parsimony principles and information-based
statistics, connected learning over time and classical mechanics [132, 145, 146].
The framework proposed in [132] naturally deals with learning problems in
which time plays a crucial role, and it is well-suited to learn from streams of
visual data in a principled way. The temporal trajectories of the variables of
the learning problem are modeled by the so called 4th order Cognitive Action
Laws (CALs), that come from the stationary conditions of a functional, as it
happens for generalized coordinates in classical mechanics.

The Lagrangian Mechanics Formalism

By and large, the Lagrangian formalism in classical mechanics models a physics
system with coordinates xt = (q, q̇), where the vector q is a point in the
configuration space of the system and q̇ denotes its time derivative. In the
time interval [t0, t1] the system starts in state x0 and ends in state x1. Each
path taking from x0 to x1 has an associated scalar value called Action. In
Lagrangian mechanics, such value is given by the functional:

Γ :=

∫︂ t1

t0

K(qt, q̇t)− V (qt, q̇t))dt (5.3)

where K is the kinetic energy and V is the potential energy, that compose
the arguments to the functional and are referred to by the term Lagrangian,
denoted with L = K − V . Moreover, if the system is defined in such a way,
the only path that the system will take is the stationary value of Γ. The
enforcement of the stationary condition, i.e. ∂Γ = 0, is obtained via the
definition of the Euler-Lagrange constraint equation:

d

dt

∂L

∂q̇j
=

∂L

∂qj
(5.4)
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Cognitive Action Laws

We consider the problem of processing a stream of data over time and, in
particular, a stream of video frames t ↦→ u(t) from a target source, being
u(t) the frame at time t in the time horizon [0, T ]. The stream is processed
by a neural network whose weights and biases at time t are represented by
the generic vector variable w(t), while ẇ(t), ẅ(t) are respectively its first and
second derivatives. In this context, it is possible to draw a link with the
principle of least action in analytic mechanics, in such a way that the neural
network weights configuration w(t) can be treated as the aforementioned La-
grangian coordinates of a system of particles. In this formulation of learning,
the potential energy of the system V can be put into relation with the loss
function commonly used in machine learning, while a more general form of the
kinetic energy K is leveraged to enforce the temporal evolution of the model
parameters.

In particular, commonly the performances of a learning agent are mea-
sured using a pattern-related loss function, which here we denote with v(·),
with the purpose of evaluating how appropriate the current network weights
configuration w is, with respect to the pattern-at-hand. Moreover, learning
happens minimizing an empirical functional risk where the input patterns xk
are extracted from the sample space, usually exploiting some random sampling
strategies.

V (w) =
1

ℓ

ℓ∑︂
k=1

v(w, xk) (5.5)

In an online learning framework, we are interested in leveraging a different
intuition guiding the functional risk, where we assume there is a trajectory
t ↦→ u(t) in the pattern space that slides along a continuous temporal mani-
fold. Input patterns are not extrapolated from a random sampling process, but
from a temporally coherent signal (video stream, in the considered scenario).
In this setting, we denote with u(t) the pattern available at time t. Given this
dynamics, the parallel with mechanics becomes more clear, and justifies the
usage of the more evocative term potential. Hence, V

(︁
w(t), u(t)

)︁
is referred

to as the potential of the system defined by Lagrangian coordinates w. Fol-
lowing this duality, we look for trajectories of the weights t ↦→ w(t) ∈ Rn that
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possibly lead to configurations with small potential energy, V
(︁
w(t), u(t)

)︁
≈ 0.

Following the duality with mechanics, the notion of kinetic energy is intro-
duced, mainly acting as a temporal regularization term which minimization
leads to develop weights that settle to constant values. In the following, we
will describe how such configuration can be obtained.

CAL: problem formulation

In [132], learning is described, in analogy with the classical mechanics setting
described by Eq. (5.3), as a variational problem whose objective is to find a
stationary point of the following functional Γ(ξ) of the maps t ↦→ w(t) ∈ Rn,

Γ(ξ)(w) :=

∫︂ T

0
L(t, w(t), ẇ(t), ẅ(t)) dt =

=

∫︂ T

0
h(t)

(︁
K(ẇ(t), ẅ(t)) − ξV (w(t), u(t))

)︁
dt. (5.6)

The Lagrangian L is composed of a kinetic energy K and a potential energy
V (see Eq. (5.3)), while h(t), when appropriately chosen, is responsible of in-
troducing energy dissipation. In fact, the optimization is generally formulated
over large time spans, i.e. lifelong visual streams. The term h(t) is a discount
factor that enforces the system to forget very old information, yielding dissi-
pation and defining the time direction via a monotone increasing form. The
term ξ ∈ {−1, 1} is selected in function of the way K is implemented (see [145]
for details). In particular, in [145, 146, 132] we have ξ = −1, h(t) = eθt, V
is composed of the loss function U of the considered problem and a quadratic
regularizer on w(t), and K includes the squared norm of the derivatives plus
their dot product, leading to

Γ(−1)(w) ≡ Γ(w) =
∫︁ T
0 eθt

(︁
α
2 |ẅ(t)|

2 + β
2 |ẇ(t)|

2 + γẇ(t) · ẅ(t) +
+k

2 |w(t)|
2 + U(w(t), u(t))

)︁
dt (5.7)

where θ ∈ R and α, β, γ, k are custom positive scalars, | · | is the Euclidean
norm in Rn and · is the standard scalar product in Rn, being n the size of
w(t).

The regularization terms involving the weights come from the connections
with the parsimony principle mentioned in Section 5.1.1, with the purpose to
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enforce spatial and temporal smoothness. In particular, the spatial smoothness
is enforced by penalizing solutions characterized by abrupt spatial changes,
hence having high spatial derivatives. Temporal smoothness is gained via the
kinetic terms K, that avoid quick temporal transitions in the solutions by pe-
nalizing high temporal derivatives. The kinetic energy can be also interpreted
as a regularization term which minimization enforces the weights development
to settle to constant values. The peculiar choice on the regularization terms
(deeply analyzed in [132]) guarantees the existence of a minimum under given
conditions.

The Euler-Lagrange (EL) equations of Eq. (5.7) yield the Cognitive Action
Laws (CALs), 4th order differential equations that, when integrated, allow w

to be updated over time. In particular, they are2

αw(4) + 2θαw(3) + (θ2α+ θγ − β)ẅ + (θ2γ − θβ)ẇ + kw +∇U(w, u) = 0 (5.8)

being w(4) and w(3) the fourth and third derivatives of w, respectively, and
∇U is the gradient of U with respect to its first argument. Cauchy’s initial
conditions can be provided on w and ẇ, while stationarity conditions of Γ

prescribe that Eq. (5.8) must be paired with boundary conditions on the right
border (t = T ).

CAL: Boundary Conditions and Causality

The whole learning process is based upon the idea of solving the problem in
a temporally local and causal way. These two requirements are strongly inter-
leaved, requiring the usage of quantities local in time (relative to the current
time step t) to solve the problem of determining w(t). In particular, in order
to achieve a truly online update of the model parameters, we need a causal
dynamic computational model as long as the requirement of the satisfaction
of the boundary conditions.

In fact, we can define a system as causal if for any t0 the state at time
t0 uniquely determines the state at time t ≥ t0. Hence, the solution w at
time t must not depend on "future" values, belonging to the interval (t, T ].
Conversely, the Cauchy’s initial conditions for the right border impose their

2We removed the time index to simplify the notation. We will do it occasionally also in
the following.



96 5. Feature learning in video streams

satisfaction at the end of learning (t = T ). But the evolution of the involved
quantities depends on the whole video signal, i.e. the "future". This issue
is due to an inherent incompatibility between Evolution problems and Varia-
tional problems for integral functionals. To gain back causality, the fulfilment
of the boundary conditions in t = T is approximated in [145] by introducing
a mechanism that sets ( “resets”) to zero all the derivatives up to w(3), when-
ever their norms become too large. In such a way, it is possible to satisfy the
boundary conditions in small portions of the analyzed video stream [132].

The U(w(t), u(t)) term in the functional of Eq. (5.7) is a potential that
describes the interaction with the environment, i.e. the frame u(t) of the video
stream, through its dependence on time. It can be instantiated in various
manners, for instance in a supervised setting as a loss function measuring the
fitting of the example-target pair, or to enforce other dynamics (visual motion
coherence in [132]).

In an unsupervised learning framework, the U term can be exploited to
solely leverage information theory-based techniques, that will be presented in
the following.

5.2 Introducing Second-Order Laws

Despite their robust principled formulation, the main drawbacks of the 4th
order CALs is the difficulty in tuning the parameters (α, β, γ, k) that weigh the
contribution of the derivatives, and the computational/memory burden due
to the integration of a 4th order ODE. Moreover, the theoretical guarantees
on the stability of Eq. (5.8) are experimentally shown to not be necessarily
needed, mostly due to the aforementioned derivative reset procedure [145].
For these reasons, we will use the CAL theory in a particular causal regime
of the parameters for which two important simplifications are attained. First,
the dynamics of the weights are described by a 2nd order ODE (instead of
Eq. (5.8)). Second, we get direct causality without the need of any reset
mechanisms.

The limiting procedure that leads to the 2nd order laws is based on a
conjecture by De Giorgi [147] that has been subsequently proved and studied
in [148, 149, 150]. By and large, this approach defines a solution for Evolutive



5.2. Introducing Second-Order Laws 97

problems, as a limit of the trajectory of a series of a family of functionals.
In detail, we consider a reparametrization in terms of ε > 0 of the Γ

functional (Eq. (5.7)), where θ → −1/ε, α → ε2α, β → εβ. This allows us to
rewrite Eq. (5.7) in line with De Giorgi’s functional,

Γε(w) :=

∫︂ T

0

e−t/ε

Å
αε2

2
|ẅ(t)|2 + βε

2
|ẇ(t)|2 + k

2
|w(t)|2 + U(w(t), u(t))

ã
dt (5.9)

where we also chose, for simplicity, γ = 0. Letting ε → 0, the minima of
the functional Γε with fixed initial conditions on w and ẇ converges to the
solution of a Cauchy problem based on a 2nd order differential equation, thus
gaining full causality, i.e., ε measures the “degree of causality” of the solution.
Notice that the factor e−t/ε in Eq. (5.9) becomes peaked on t = 0 as ε → 0,
exponentially suppressing the Lagrangian at later times. Hence, the mini-
mization procedure of Γε will be mainly concerned in the minimization of the
loss calculated at t = 0+. At a first glance, this might seem counter-intuitive.
However, it becomes a useful feature when considered in conjunction with the
properties of the input signal u(t).

Let us indicate with τ > 0 the temporal scale of u(t), that is a small time
span under which the variations of the input frame u(t) with respect to the
previous considered time instant are semantically negligible.
The whole temporal interval [0, T ] can be partitioned into ⌈T/τ⌉ disjoint inter-
vals [0, τ), [τ, 2τ), . . . , [(⌈T/τ⌉ − 1)τ, T ), in each of which the aforementioned
picky behaviour is not critical in evaluating the functional, due to the tempo-
ral scale of u(t). Indeed, the time span τ > 0 is so small that the peaked term
is able to comprise the whole temporal window of the integration.

The minimization of Eq. (5.9) can be iteratively defined by minimizing
Γε in each interval (hence, a series of minima problem), where the conditions
on the left boundary are given by the solution of the minimization in the
previous interval. In particular, each one of these minimization procedures
solves a non causal problem. When ε ≪ τ , the minimization problem can be
well interpreted in terms of the value of U(·, u(κτ)), for κ = 0, . . . , ⌈T/τ⌉ − 1.
Hence, the condition ε ≪ τ assures the approximation of a problem that is
indeed causal. When ε > 0 the problem is non-causal due to the negative
exponential and the sequence of problems, however as ε → 0 the solutions of
this problem will converge (in some sense) to the solution of a single causal
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problem.
To introduce the EL equations of the newly introduced problem, for sim-

plicity, we will describe the limiting procedure in the interval [0, T ], that ap-
plies to each of the ⌈T/τ⌉ previously described intervals. The EL equations
for the minimizer of Γε with initial conditions w(0) = w0 and ẇ(0) = w1 are{︄

ε2αw(4)(t)− 2εαw(3)(t) + (αϵ2 − εβ)ẅ(t) + βẇ(t) + kw(t) +∇U(w(t), u(t)) = 0;

w(0) = w0, αẇ(0) = αw1, αẅ(T ) = 0, αεw(3)(T ) = βẇ(T ),
(5.10)

and the following theorem holds:

Theorem 1. The solution of the problem (5.10) converges (weakly in
H1
(︁
(0, T ),Rn

)︁
to the solution of{︄

αẅ(t) + βẇ(t) + kw(t) +∇U(w(t), t) = 0;

w(0) = w0, ẇ(0) = w1.
(5.11)

Equations (5.11) are 2nd order CALs. They are simpler than the 4th order
CALs of Eq. (5.8), even if they maintain their principled nature3.

5.2.1 A Temporally local computational model

Thanks to the introduction of the Second Order Laws and the aforementioned
limiting procedure, in each interval the learning process carries on the mini-
mization of a functional that is temporally local, thanks to the gained causality
of the system. This means that in every considered interval ⌈T/τ⌉, the learn-
ing process moves the learnable weights towards the best configuration for the
current time span, with boundary conditions depending solely on local quan-
tities. The temporal locality of this approach fosters a computational model
view of the problem (see Chapter 2), where this temporal architecture can be
easily translated into a DAG. The temporal configurations assumed by the
model can be interpreted as nodes of the whole architecture, a DAG defined
on the input stream, where each node computation depends solely on the local
weight configuration w(t) and the current input frame u(t). This particular
intuition will come in handy in the following.

3See the Appendix of [40] for formal proofs and further details.
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5.3 Mutual Information in Video Streams

We consider the problem of transferring information from a continuous, and
potentially lifelong, input visual stream to the output space of a multi-layer
convolutional network with ℓ layers.

We denote with the term Retina and symbol R the bidimensional plane
composed by the pixels of each input frame. The pixel coordinates x ∈ R

identify its position inside the frame. The neural architecture processes each
frame and yields m pixel-wise predictions, being m the size of the filter bank in
layer ℓ. For each pixel, the i-th prediction can be interpreted as the probability
of attaching to that particular pixel the i-th symbol (denoted with yi) of a
discrete vocabulary composed by m symbols. In order to do so, hyperbolic
tangent is used as activation function in each layer j < ℓ, while the last layer
is equipped with a softmax activation, generating m probabilities p(w, x, u) =
(p1(w, x, u), . . . , pm(w, x, u)), being once again x a pair of pixel coordinates
and u the processed frame. Notice that these quantities represent conditional
probabilities, i.e. probabilities of the output symbol conditioned on the actual
weight configuration, the processed pixel and the frame.

The goal of the learning process is the maximization of the information
transfer from the input to the generated symbols, that corresponds to the
maximization of the Mutual Information (MI) from the pixels of the input
frames to the m-dimensional output space yielded by the m units of the last
layer, as depicted in Figure 5.1.

This problem is studied in [132] and related papers [146, 145], where single-
layer models (or stacks of sequentially trained single-layer models) are consid-
ered, while, in this dissertation, we exploit a deep network trained end-to-end.
Previous approaches based on kernel machines can be found in [151, 152].

In order to define the MI index, we consider a generic, time independent
weight configuration ω ∈ Rn. Moreover, we define the random variables X,
associated with the input spatio-temporal probability distribution, while the
random variable Y specifies the probability distribution over the output sym-
bols. Since we are dealing with convolutional features, a realization of the
random variable X is specified by the coordinates of a point x ∈ R, the value
of the temporal instant t and the value of the video u(t), hence with the triple(︁
x, t, u(t)

)︁
. The MI between X and Y follows the laws defined in Eq. (5.1),
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X

YI(X,Y)

Figure 5.1: The goal of the learning process is the maximization of the
information transfer (I(X,Y )) from the input visual stream X to the m-
dimensional output space Y of a multi-layer convolutional network with ℓ

layers.

but in this setting we deal with an estimation of this quantity that comprises
a temporal interval, i.e. a continual stream. In order to do so, we introduce
the average output activation on the video portion between time instants t1
and t2,

P (ω, t1, t2) ≡
∫︂ t2

t1

P (ω, t)dt :=

∫︂ t2

t1

∫︂
R
p(ω, x, u(t))µ(x, t)dxdt, (5.12)

where µ(x, t) is a spatio-temporal density and R is the aforementioned Retina.
When no further information is available, µ is commonly assumed to be uni-
form in time and space and it is normalized such that

∫︁ t2
t1

∫︁
R µ(x, t)dxdt = 1.

The P (ω, t) symbol denotes an instantaneous probability of the output sym-
bols on the whole Retina, computed via the total probability rule in terms of
the conditional probabilities p(w, x, u) = (p1(w, x, u), . . . , pm(w, x, u)).

Given this definition, we can obtain the entropy of the output symbols



5.4. Constraining predictions over-time 101

between time instants t1 and t2,

H(Y ;ω; t1, t2) = −
m∑︂
j=1

Pj(ω, t1, t2) logPj(ω, t1, t2) (5.13)

simply following the definition in the case of discrete random variables.
Moreover, we can define the conditional entropy between time instants t1

and t2,

H(Y |X;ω; t1, t2) = −
m∑︂
j=1

∫︂ t2

t1

∫︂
X

pj(ω, x, u(t)) log pj(ω, x, u(t))µ(x, t)dxdt (5.14)

We can then plug Eq.(5.13) and (5.14) into the MI definition (Eq. (5.1)),
in order to define the MI index over the video portion [t1, t2],

I(X,Y ;ω; t1, t2) = H(Y ;ω; t1, t2)−H(Y |X;ω; t1, t2)

In order to better cope with the optimization dynamics, the two entropy
terms are commonly weighted by positive scalars λe, λc, weighing the entropy
and conditional entropy, respectively.

5.4 Constraining predictions over-time

Performing maximum-MI-based online learning of w using the CALs in the
time horizon [t1 = 0, t2 = T ] is not straightforward. As highlighted in Section
5.1.3, the online learning mechanics yielded by the second order CALs would
require to plug (minus) the MI index as a potential loss U in the Lagrangian.
We can restore the dependency of w on time in the MI computation (Eq.
(5.15)), by inserting w(t) in place of ω, however we can see that the MI index
computation is non-local in time. Indeed, formally the computation of the
probability of the symbols (needed to compute the entropy) does require in-
formation regarding the whole time span [t1 = 0, t2 = T ] of the video stream.
Unfortunately, this requirement breaks both the causality and temporally lo-
cality properties. Actually, as noticed in Section 5.2.1, in order to implement
online learning dynamics, U must be temporally local, i.e., it should depend
on w and u at time t only. For this reason, the authors of [132] enforce time
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locality computing the MI index at time t, and not in an interval. With this
method it is possible to obtain an approximation of the MI in [0, T ], yielded
by the outer integration in the functional of Eq. (5.9) (or, equivalently, in the
one of Eq. (5.7)).

A drawback of this formulation is that, due to this temporal assump-
tion, it could lead to a loose approximation of the original term H(Y ; ·; ·, ·)
of Eq. (5.15), for which the inner integration on time (Eq. (5.12)) is lost, and
replaced by the outer integration of the functional. This corresponds to an
averaging at frame level, hence obtaining a biased view on the symbols proba-
bility. Carrying on this kind of update hardly keeps track of the entropy of the
output space due to the data processed so far, potentially leading to poorly
informed updates.We denote such approach of entropy temporal estimation
with PLA.

Following the intuition presented in Section 5.2.1, we explore an alternative
criteria to mitigate the impact of time locality. The whole online process that
yields the frame probability predictions obtained at each time instant can be
treated as a temporal computational model. If the requirements of causality
and time locality are met, the computations ideally happen solely leveraging
local quantities.

To fulfill this requirements, and similarly to what we presented in the
previous Chapters, we decompose the temporal computational model into local
subcomponents, which are put into communication through the mathematical
notion of constraint. In particular, we introduce an additional auxiliary local
variable s(t), that is used to replace P of Eq. (5.12), with the purpose of
creating a quantity capable to define a temporal estimate which is not limited
to the current frame. In order to do so, we constrain its variation, ṡ(t), to be
almost equivalent to P (w(t), t), the instantaneous output symbol probability.
The Lagrangian is augmented with the differential soft-constraint

λs|ṡ(t)− P (w(t), t)|2 (5.15)

that enforces s(t) to approximate the case in which the probability estimate
is not limited to the current frame. The constant λs is exploited to weigh the
enforcement of the constraint in the total optimization process. Note that
probabilistic normalization must be enforced after every update of s(t).
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Following this approach, the local auxiliary variable s(t) aggregates tem-
poral information over time, both considering the probability of the output
symbol in the current frame (P (w(t), t)), and the previous time instants, con-
tained in the internal state of the s(t) variable. We denote this approach with
the symbol VAR.

This formulation fosters the decomposition of the global entropy estimation
through quantities that are able to cope with temporal information, but are
indeed local in time. In such a way, the requirement of causality is fulfilled,
and the online entropy estimation can be injected into learning process (as a
potential in the U term) via the causal Second Order CALs.

Inspired by this solution, we propose a second temporal criterion, (AVG),
that exploits a similar approach without directly enforcing a constraint into
the Lagrangian. We propose to replace P with the outcome ν of an averaging
operation that keeps track of the past activation of the output units,

ν(t) = ζsν(t
′) + (1− ζs)P (w(t), t) (5.16)

for two consecutive time instants t > t′. The intuition is similar to the
VAR approach, with the purpose of keeping the memory of the past predic-
tion in order to produce a more informed entropy temporal estimation. In
this case, it is this averaging operation that indirectly connects the temporal
subcomponents of the overall computational model.

5.5 Restricting Computations on Salient Areas

While the previous Section deals with defining a proper temporal probability
distribution of the learning process, other interesting considerations can be
carried out in terms of the spatial distribution. In fact, the way video data
is commonly processed by machines usually lacks a key property of the hu-
man visual perception, that is the capability of exploiting eye movements to
perform shifts in selective visual attention. High visual acuity is restricted
to a small area in the center of the retina (fovea), and the purpose of the
Focus Of Attention (FOA) is to selectively orient the gaze toward relevant ar-
eas with high information, filtering out irrelevant information from cluttered
visual scenes [153, 154, 133] (on the right in Figure 5.2). As a result, the
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Figure 5.2: On the left, a depiction of the spatial uniform probability density
commonly exploited in image procesing – all the pixels equally contribute
to the learning process. On the right side, a human-like focus of attention,
denoted with the red cross, filters relevant information in the visual scene.

FOA is a natural spatial filtering scheme that humans apply to the visual
stimuli, and that allows them to explore and understand also complex scenes
in an efficient way, discarding the unneeded visual information. Conversely,
the common image processing pipeline implicitly assumes that all the pixels
equally contribute to the learning process, hence considering a uniform spatial
probability distribution of their coordinates over the retina, as depicted on the
left in Figure 5.2.

In the context of Section 5.3, we consider a visual stream and a neural
architecture with m output dimensions (per pixel), and we aim at developing
the network weights w such that the MI index is maximized as strongly as
possible with respect to the model capacity. Of course, restricting the atten-
tion to a subset of the spatio-temporal coordinates of the video, due to a FOA
mechanism, seems to inherently carry less information than when considering
the whole video. However, in the latter case, the processed data will be char-
acterized by a larger variability, mixing up noisy/background information with
what could be more useful to understand the video, as pointed out also in re-
cent literature [131]. Such mixture of data could be harder to disentangle by a
learning model than well-selected information coming from a human-like FOA
trajectory, leading to a worse MI estimate. Curiously, the learning process
restricted to the FOA trajectory could end-up in facilitating the development
of the weights. In so doing, even the information transfer measured on the
whole frame by a model learned solely on the focus trajectory, could be larger
than the one obtained by a model learned without restrictions – hence having
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a uniform spatial probability density over the Retina.
Following the notation of Eqs. (5.12, 5.14), the MI maximization, for each

t, is based on the spatial distribution µ(x, t). This term models the relevance
of each coordinate x when learning from frame u(t). In [145, 146], µ(x, t) is
assumed to be uniform over the frame area, while in [132] it is also described
the idea of considering µ (f in [132]) as the most natural candidate for im-
plementing a FOA-based mechanism. Let us assume that a(t) are the spatial
coordinates of the FOA at time t, then we define

µ(x, t) := g(x− a(t)), (5.17)

being g a function that is peaked on a(t). Following this parametrization of µ,
we borrow a state-of-the art model for scanpath a(t) prediction defined in [133],
that shares a physics-inspired formulation as CALs. Several recent approaches
deal with an attention estimation mechanism which outputs a saliency map,
generally producing aggregated statistics on the most relevant areas of ana-
lyzed visual stream [155, 156], processed in offline manner. In the context
of our online temporal computational model, our choice falls upon a FOA
predictor [133] that is specifically designed to generate real-time scanpaths,
i.e. temporal sequences of fixation points, from a state-of-the art ODE-based
formulation, making it well paired with our learning scheme.

This FOA model has been proven to be strongly human-like in free-viewing
conditions [157]. It is based on the intuition that the attention emerges as a
gravitational process, in which both low-level (gradient, contours, motion) or
high-level features (objects, context) may act as gravitational masses. In par-
ticular, given the gravitational field E(t, a(t)), the law that drives the attention
is

ä(t) + ρȧ(t)− E(t, a(t)) = 0, (5.18)

that is indeed another 2nd order model as the one we proposed in Section 5.2
(see [133] for more details). The dissipation is controlled by ρ > 0, and the im-
portance of each mass can also be tuned. Interestingly, Eq. (5.18) describes the
dynamics of the FOA, and it is not based on pre-computed or given saliency
maps. In this paper, following [133], we consider two basic (low-level) percep-
tive features as masses, the spatial gradient of the brightness and the strength
of the motion field. The trajectories simulated by the model show the same
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patterns of movement characteristic of human eyes: fixations, when the gaze
remains still in a location of interest; saccades, rapid movement to reallocate
attention on a new target; smooth pursuit, slow movements performed in the
presence of a visual feedback with the purpose of tracking a stimulus.

Different choices on g are possible. In Section 5.6 we will consider the
extreme case in which g(x − a(t)) is a Dirac delta on the coordinates a(t)

(we will refer to it as FOA), so that µ(x, t) is essentially a mono-dimensional
signal. A less extreme setting is the one in which g is a squared window
centered in a(t) that covers a small fraction of the frame (FOAW), while the
most-relaxed setting is when g is simply uniform on the whole frame (UNI),
i.e., a(t) is not used.

5.6 Experimental Results

In order to prove the capabilities of the proposed unsupervised learning mecha-
nism, we evaluated the amount of information transferred from different video
streams with the 2nd order laws of Section 5.2, using multiple instances of
the deep convolutional network described in Section 5.3. We analyzed how
the joint contribution carried by the proposed constrained temporal MI esti-
mation presented in Section 5.4 and the spatial filtering induced by the FOA
(Section 5.5) is reflected into the information transfer.

Models. We experimented with three different Convolutional Architec-
tures, referred to as S (Small), D (Deeper), DL (Deeper and with a Larger
number of neurons), and they are based on 5×5 filters (except for the last layer
– 7×7 filters), ℓ = 3 (S) or ℓ = 7 (D, DL) layers, and either m = 10 (S, D) or
m = 32 (DL) filters in layer ℓ. Networks S and D are composed of 20 filters
in each hidden layer, while DL has 32 filters in each hidden layer. Following
Section 5.5, we compared 3 potential terms based on 3 different input prob-
ability densities µ(x, t), named UNI, FOA, FOAW (uniform, foa-restricted,
and foa-window-restricted, respectively – window edge is 15% of the min frame
dimension). For each of them, we tested the 3 criteria of Section 5.4 to extend
the temporal locality, PLA, VAR, AVG (fully local, variable-based, average).
We integrated the differential equations using the Euler method.

Setting & Data. We considered three visual streams with 105k frames
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each. The first 100k frames are the ones on which learning is performed, by
integrating the CALs. Then, the developed weights w(T ) are used to measure
the MI index over the following 5k frames, directly applying the MI formula-
tion of Eq. (5.15), i.e., I(X,Y ;w(T ); 100000, 105000), that is what we report
in the results of this section. For all the models, independently on the proba-
bility density used in their potentials, we measured the MI index using µ(x, t)

in the UNI, FOA, FOAW cases. This means that, for example, a model

Figure 5.3: Sample frames taken from the SparseMNIST, Carpark, Call
streams, left-to-right.

trained following the FOA trajectory is then evaluated in the 5k test frames
either considering the whole frame area, the FOA trajectory, or the window-
based FOA trajectory. The three streams (Fig. 5.3), have different properties.
The first one, SparseMNIST, is composed of a static frame (280 × 280) in
which 10 digits from the MNIST data are sparsely located over a dark back-
ground. The second video, Carpark, is taken from a fixed camera monitoring
a car parking area in front of a building. The last video, Call, is a recording
taken from a webcam during a video call. Videos are repeated until the target
number of frames is reached. The last two videos are processed at 240× 180

pixels per frame, grayscale, ≈ 30 frames per second. We selected videos that
naturally represent repetitive contents, so that they can be repeated without
introducing evident scene changes. Contents and events are heterogeneous
among the videos.

Parameters. The FOA trajectory was generated by weighing the two
gravitational masses 0.1 (frame details) and 1.0 (motion), respectively, and
adjusting ρ ∈ [0.1, 0.5] in order to adapt it to the each video. We analyze the
behaviour of the FOA trajectories in Fig. 5.4. In particular for each stream
we show a representative frame, a heatmap obtained from the FOA scanpath
as well as a scatter plot of the FOA fixations and velocity.
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After a first experimentation in which we qualitatively observed the be-
haviour of the 2nd order laws, we set α = 0.01, β = 0.1, k = 10−8. For
each model we considered multiple weighing schemes of the parameters λc ∈
{10, 100, 200, 1000}, λe ∈ {20, 200, 400, 2000, 4000}, λs ∈ {10, 100, 1000}, ζs ∈
{0.01, 0.05, 0.07}, selecting the ones that returned the largest MI during the
learning stage. As a general rule of thumb, using a lower value of the con-
ditional entropy weighing term λc w.r.t. the entropy weight λe, helps the
model to exploit all the available output symbols. The network weights w(0)

were randomly initialized, enforcing the same initialization to all the compared
model.

Spatial filtering. The analysis on the contributions of the various Spa-
tial filtering approaches (UNI,FOA, FOW) are reported in Tab. 5.1. Each
column, starting from the third one, is about a model, defined by the pair
(architecture, density used in the training potential). For each model, the
MI index is reported when measured using different spatio-temporal densities
(they are labeled in column “Test”). We used the temporal locality criterion
that led to the best results. Overall, the models trained on FOA-based densi-
ties (columns FOA, FOAW) usually perform better than the ones that were
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Figure 5.4: For each stream, we show (left) the areas mostly covered by FOA
(blue: largest attention), and (right) the scatterplots of the fixation points,
with hue denoting the magnitude of the FOA velocity (blue: slower; yellow:
faster). Low-speed movements happen on the most informative areas (e.g.,
digits, busy roads, human presence/movement, respectively).
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Table 5.1: Spatial filtering. Mutual Information (MI) index in three video
streams, considering three neural architectures (S, D, DL). Each column
(starting from the third one) is about the results of network trained using an
input probability density taken from {UNI, FOA, FOAW}, and tested mea-
suring the MI index in all the three density cases (labeled in column “Test”).

S D DL

Stream Test UNI FOA FOAW UNI FOA FOAW UNI FOA FOAW

UNI 0.017 0.112 0.078 0.004 0.144 0.020 0.012 0.132 0.026
SparseMNIST FOA 0.239 0.486 0.391 0.103 0.431 0.229 0.146 0.350 0.194

FOAW 0.154 0.209 0.197 0.144 0.255 0.157 0.117 0.215 0.131

UNI 0.776 0.601 0.695 0.653 0.556 0.745 0.445 0.292 0.496
Carpark FOA 0.742 0.675 0.694 0.678 0.639 0.768 0.477 0.315 0.529

FOAW 0.719 0.629 0.671 0.653 0.601 0.721 0.501 0.357 0.532

UNI 0.329 0.314 0.315 0.339 0.556 0.350 0.208 0.304 0.218
Call FOA 0.405 0.405 0.371 0.430 0.582 0.492 0.246 0.365 0.270

FOAW 0.429 0.420 0.413 0.442 0.566 0.457 0.304 0.374 0.310

exposed to a uniform µ(x, t) over the frame area (columns UNI). This is par-
ticularly noticeable in the SparseMNIST and Call streams, characterized
by a still and not-much-detailed background and few regions of interest, i.e.
the digits or the moving speaker, respectively. The filtering approach induced
by the attention in the training stage highly improves the information trans-
fer over most of the considered test measurements, with just a few exceptions.
These considerations hold at a lesser degree also in the Carpark stream, in
which frames are more detailed. The focus is attracted by a busy road or
by people parking their cars. However, also the immediate surroundings of
those regions contain much information, so that training with FOAW density
achieves the best results in architectures D and DL, while the more extreme
FOA approach do not compete with models trained considering the whole
frame (UNI). In both the Carpark and Call streams, the S architecture
does not benefit from learning over the attention trajectory. We motivate this
result by considering that S is a shallower model, that inherently learns lower
level features than the other ones. These features are more common to differ-
ent frame locations, making the impact of attention less evident. In the case
of SparseMNIST, the dark-uniform background dominates the frame, and
learning over a(t) induces a largest information transfer also in the network S.
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Temporal locality. In order to evaluate the impact of the temporal
locality criteria (PLA, AVG, VAR), we restrict our analysis to models trained
with a FOA-restricted probability density. In this case, we describe each model
by the pair (architecture, temporal locality criterion), and we report results in
Tab. 5.2. In general, the moving average criterion (AVG) achieves the best
performances in all settings, with some exceptions. The Carpark stream has
temporal dynamics that are pretty repetitive and periodic (e.g., cars crossing
the same crossroad etc.). Hence, the addition of a criterion able to keep better
track of the temporal information turns out to be less necessary. We notice
higher values of the MI index in the fully temporally local case (PLA) in the
architecture DL. This may be due to the fact that DL has a larger number
of parameters and units than the other nets, and it has intrinsically more
capacity to memorize the temporal information. The MI index is lower than
for the other architectures due to the largest size of the output space. Despite
the fact that the AVG criterion shares the same intuition with the constrained
one (VAR), the latter one performs worse. We believe that this is mostly due
to the fact that enriching the already complex Lagrangian with the differential
soft-constraint, together with the introduction of a novel auxiliary variable,
potentially hinders the optimization process as a whole. However, the very
same intuition of a “local” variable that keeps an internal state of the previous
entropy predictions proved to be effective thanks to the AVG criterion.

Random scanpaths. We are left with the open question on whether
the largest information transfer we experienced when learning on the spatio-
temporal focus trajectory is due to the state-of-the art attention model we
are using or it is only due to the reduction of the size of the input data.
We compared models trained on the FOA trajectories used so far with the
same networks trained with a fully-local spatial density defined over a random
scanpath – obtained by randomly sampling a(t) from a uniform distribution
over the retina. Afterwards, both the learned models are tested exploiting the
FOA measure on a regular (human-like) scanpath.

The results of Fig. 5.5 show that the human-like trajectory estimated by
the selected attention model has a clear positive impact in the information
transfer. Interestingly, in the Carpark case we sometimes observe that fix-
ations, that explore random coordinates, highly foster information transfer.



5.6. Experimental Results 111

Table 5.2: Temporal locality. Mutual Information (MI) index in three video
streams, considering three neural architectures (S, D, DL). Each column
(starting from the third one) is about the results of the network trained us-
ing the FOA trajectory with a temporal locality criterion taken from {PLA,
AVG, VAR}, and tested measuring the MI index in all the three density cases
(labeled in column “Test”).

S D DL

Stream Test PLA AVG VAR PLA AVG VAR PLA AVG VAR

UNI 0.071 0.112 0.102 0.006 0.054 0.144 0.028 0.132 0.080
SparseMNIST FOA 0.425 0.486 0.298 0.149 0.321 0.431 0.119 0.350 0.184

FOAW 0.183 0.209 0.208 0.146 0.184 0.255 0.127 0.215 0.176

UNI 0.601 0.486 0.371 0.422 0.556 0.315 0.292 0.289 0.204
Carpark FOA 0.675 0.521 0.401 0.458 0.639 0.326 0.315 0.307 0.209

FOAW 0.629 0.548 0.447 0.489 0.601 0.389 0.357 0.357 0.277

UNI 0.289 0.314 0.267 0.259 0.556 0.369 0.304 0.189 0.200
Call FOA 0.326 0.405 0.265 0.328 0.582 0.459 0.365 0.214 0.260

FOAW 0.383 0.420 0.373 0.368 0.566 0.443 0.374 0.274 0.275

This confirms our previous statements regarding the large amount of informa-
tion in the whole frame area.

Learning dynamics. We investigate the behaviour of the models dur-
ing the training stage, restricting our analysis in the case of architecture D
and a single training/test probability density, FOA. The plots of Fig. 5.6,
for each value t of the x-axis, show the MI index computed in the interval
[0, t] along the FOA trajectory, for different temporal criteria (PLA, AVG,
VAR). The constraint-based (VAR) model tends to quickly find a stationary
condition of the estimated MI index value. Both PLA and AVG incur in an
initial stage with evident fluctuations before becoming more stable, usually
in larger values than VAR. The highly different learning dynamics confirms
our claims regarding the high influence on the optimization process caused
by the introduction of the soft-constraint into the Lagrangian. The spikes
visible in the first stages of learning are due to the fact that learning hap-
pens along the FOA trajectory. In this case, the spatio-temporal distribution
µ(x, t), conditioning the output symbols, is defined over a single pixel. This
means that the models have to deal with pretty varied conditions, which is
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limited to a single focus location in each frame, struggling to find a stationary
condition. As long as time passes and a largest portion of stream is processed,
fluctuations are mitigated reaching more stable configurations. Remarkably,
the VAR constraint-based (VAR) model does not suffer from this issue and
reaches faster a stable configuration.
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Figure 5.5: Comparison between models trained on a regular trajectory of
the attention and on a random trajectory (suffix -Rnd), for architectures S,
D, DL. Each bar is about a different training probability density, and the
height of the bar is the test MI index along the regular FOA trajectory.
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Figure 5.6: Learning dynamics (model D-FOA, different temporal criteria).
The MI index is shown at different time instants. The index at time t is
evaluated along the FOA trajectory in the interval [0, t].

5.7 Discussion and Future Work

In this Chapter we delved into a novel approach to Mutual Information (MI)
maximization rising from the conjunction of online entropy estimation mech-
anisms, obtained through a temporal computational model which leverages a
constraint-based approach and a human-like focus of attention. We introduced
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a 2nd order differential model capable to fulfill the requirements of temporal
locality and causality. These two characteristics come in handy when decou-
pling the temporal computational model into local subcomponents. Doing so,
we are able to devise an online temporal estimation of the output entropy ex-
ploiting the mathematical notion of contraints (VAR), or a similar intuition
that averages the output predictions over time (AVG).

We provide insightful experimental results to support the intuition that
using the spatio-temporal density of the focus of attention to drive the learning
dynamics fosters an increment of the globally transferred information from the
input stream. Models trained exploiting the proposed attention trajectory and
temporal estimation are also able to increase the information transfer not only
over the focused areas, but, in some cases, over the whole frame area. Future
work will be devoted to enforcing coherence over the predictions performed on
the focus trajectory to develop high-level representations.





Chapter 6

Conclusions and Future Works

Throughout this dissertation we investigated a novel path into the direction
of learning in neural networks. We devise a framework capable of decom-
posing neural architectures into local components, i.e. subparts constituting
the overall computational model. The introduction of auxiliary variables and
the unifying mathematical notion of constraint are leveraged to force inter-
nal knowledge onto the structure of the neural models, enforcing the com-
munication among local components. Indeed, in this way it is possible to
partially describe the computation performed by the network using structural
constraints.

This heterogeneous optimization scheme is based on “locality” principles,
that allow us to express a local learning procedure in several DAG architectures
(Chapter 3), to avoid costly iterative procedures (Chapter 4) or to better
estimate given temporal quantities (Chapter 5) without the need to bufferize
data.

In the following, a brief summary of the key contributions of the Thesis
will precede some intuitions on relevant directions for further work.

6.1 Summary of Contributions

• Chapter 3 describes the first instance of the aforementioned intuition.
The computational graph describing the flow of information inside a
generic DAG is decomposed into local components. In this way, it is
possible to express the computational structure by the so-called archi-
tectural constraints, giving rise to the Local Propagation algorithm [37].
It has been shown that the Lagrangian formulation in the adjoint space
leads to a fully local algorithm, LP, that naturally emerges when search-
ing for saddle points. The optimization process can be interpreted as
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a force that gradually enforces the constraint satisfaction, fostering the
flow of information and leveraging updates supported by local variables.
Finally, the experimental analysis carried on several benchmarks con-
firmed the feasibility of the proposed approach.

• In Chapter 4 we exploited a similar idea in order to avoid the unfolding of
the convergence procedure in the original model of GNNs. The learning
task is formulated as a constrained optimization problem devised follow-
ing the principles of locality, i.e. the computational graph decomposition
into local subparts connected via constraints. The problem definition al-
lows us to avoid the explicit computation of the fixed point of the state
transition function, that is needed to encode the graph, whilst the con-
straints allow the model to modulate the effects of the diffusion process.
We proposed a mixed strategy that jointly optimizes the model weights
and the state representations without the need of separate optimization
stages, referred to as Lagrangian Propagation GNNs [39]. Moreover, the
constrained representation of the learning procedure can be replicated
multiple times, simulating a layered approach, introducing an increased
representational power [38].

• Chapter 5 outlined a novel promising approach to maximize the infor-
mation transfer from a continuous visual stream to the output space
of a Convolutional Neural Network. The introduction of Second Order
Cognitive Action Laws defines a learning process on a temporal compu-
tational model that is causal and local in time. These two characteristics
are leveraged to decompose the temporal estimations into local contribu-
tions, put into communication by softly-enforced constraints, or similar
local averaging ideas, that allow us to produce an online estimation of the
entropy terms. Moreover, the input spatio-temporal probability distri-
bution is modelled by a human-like focus of attention (FOA) trajectory,
obtained by a SOTA predictor. The FOA scanpath drives the learning
dynamics, filtering the visual stream and fostering an increment of the
globally transferred information from the input stream [40].
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6.2 Issues and future research directions

6.2.1 Local Propagation

Parallel Computations Chapter 3 proved the feasibility of the LP algo-
rithm and its optimization scheme. In order to test our claims, we exploited a
commonly used Machine Learning framework (i.e., Tensorflow) leveraging its
ready-to-use libraries and resources. This kind of frameworks have been de-
veloped bearing in mind the common pipeline of the sequential computational
graphs characterizing MLPs and feedforward networks, as long as learning
algorithms such as SGD. However, as highlighted in [62], stochastic gradient
methods are characterized by a limited scalability, given the fact that they
focus on many lightweight minimization steps computed on small amount of
data (i.e., mini-batches). Whilst in a serial setting such computational struc-
ture represents a big advantage (GPU-based computation, with shared low
memory spaces accessible by many cores), in a parallel multi-processor setting
each one of such computational step is too inexpensive to be split over multi-
ple cores. Moreover, every mini-batch based computation in BP involves the
forward propagation of the data-at-hand along the whole network architecture
in a sequential manner, followed by the sequential backward computations of
the gradients. Modern hardware (GPUs) can benefit by the parallelization of
the matrix operations within each layer, but parallelizing the computations
over layers is hard.

Thanks to the decomposition of the learning problem into local compo-
nents, LP is capable to go beyond the aforementioned limitations. Indeed, in
order to make full use of LP, an highly parallel implementation of the pro-
posed algorithm should be exploited. The overall computation performed by
LP could be easily scaled up thanks to its local nature, exploiting data paral-
lelization strategies (e.g. many worker nodes). Each computational unit needs
to store the variables (auxiliary variable for neural units, xℓ,i, and the related
Lagrange Multipliers, λℓ,i) belonging to a particular subset of layers/neurons
and corresponding to a subset of the data, alongside the variables and quan-
tities needed by the local optimization step. In particular, the ℓ-th computa-
tional unit needs to share the memory where some variables are stored with
the (ℓ + 1)-th and (ℓ − 1)-th units. Following this scheme, the computations



118 6. Conclusions and Future Works

could be parallelized both on the example dimension i and on the layers ℓ di-
mension. The constraint satisfaction values could be computed at node-level
and than transmitted to a central node in order to be summed up with a re-
duction operation into the global loss function. Afterwards, the central node
could broadcast the information needed for the parameter update. This step
could represent, however, a bottleneck for the depicted distributed scenario.

Such highly distributed solution could, in principle, scale linearly with the
number of working nodes, as proved in [62], which investigates the ability of a
similar local constraint-based approach to scale with the number of available
computing cores. Such an approach would require an ad-hoc code implemen-
tation (which goes beyond the commonly available ML frameworks) as long as
a particular focus on the optimization of the communication protocol among
nodes (e.g., reduction of exchanged information).

In particular, we can think of pursuing the intuitions behind the research
field of Federated Learning [158] and its guiding principles on decentraliza-
tion and distributed optimization mechanisms to overcome the aforementioned
communications problems. Recent works [159] are capable to train deep mod-
els leveraging millions of devices with a reduced network communication, using
compressed updates with efficiency, security and scalability in the aggregation
of the model updates. For all the aforementioned reasons, the application of
such solution on a potentially parallelizable algorithm such as LP could bring
important advantages.

Memory scalability issues The local nature of the LP algorithm is
achieved thanks to the introduction of additional variables to the learning
problem. In particular, for each input pattern i the procedure introduces an
auxiliary variable for each neural unit of each layer ℓ (xℓ,i) and the related
Lagrange Multipliers (λℓ,i). This fact could hinder its applicability to tasks
characterized by huge datasets, especially if the training procedure exploits
a full-batch mechanism, i.e. processing all the data at once. While we did
not experience any memory complexity issues in the experimental campaign,
we believe that scaling up the size of the datasets-at-hand could preclude the
usage of the algorithm in the current available Tensorflow implementation.
In order to solve this problem, several solutions can be proposed, besides a
simple mini-batch SGD-like approach. Certainly, as mentioned in the previous
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paragraph, the proposed locality of the computations and their parallelization
could represent an immediate solution and highly alleviate this problem.

Moreover, another interesting research path is the reduction of the needed
auxiliary variables. The Lagrange multiplier variables (λℓ) could be reduced
defining constraints on whole layers instead of single neurons, or decoupling
them from the pattern dependence.

Predicting multipliers & optimization The most promising direction
of research is the possibility to completely remove the need to collect such
variables. An ANN can be used to predict the Lagrange multipliers, given
the local context of each neuron (connected units, its activation, the previous
value of the neuron variable). The optimization process follows the same rules,
but in this case instead of the Lagrange Multipliers Λ, the gradient ascent step
is carried on considering the derivative of the Lagrangian with respect to the
learnable parameters of the ANN implementing the multipliers predictor.

This novel intuition could be analyzed also from the optimization point of
view, substituting the BDMM algorithm with alternatives or evolutions [80].

Architecture Search The learning process may be enriched by the en-
forcement of a L1-norm regularizer (weighted by α > 0) on each xℓ,i. In such
a way, the model could in principle focus on a smaller number of paths from
input to output units, reducing the search space.

This interesting approach could lead to findings in the direction of archi-
tecture search. The variables xℓ associated to the neural units, that are not
contributing to the information flow (i.e. their value is close to zero due to the
regularization), could be in fact pruned from the architecture, together with
the weight connecting them with the neighboring layers.

6.2.2 Lagrangian Propagation GNNs

The optimization process carried on in LP-GNNs is the same as the one ex-
ploited in LP, even if the computational and memory burden is solely due to
the node state computation (i.e. not depending on each neural unit of the
state transition and output functions, which are learned via BP). However,
the considerations on parallelization could bring benefits also in the case of
this approach.

Predicting multipliers In the context of GNNs, the idea to use an ANN
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to predict the value of the Lagrange multipliers conditioned on the neighbor-
ing nodes states and/or their features, highly resembles the isotropic models
(see Section 4.1) like GAT [95]. Indeed, learning the Lagrange multiplier in
this case can be seen as weighting the contribution of a particular node (the
corresponding constraint) as done in attention models.

Other future works Due to the originality of what we described in Chap-
ter 4, several aspects of our model can be the subject of further investigations.
We plan to extend the experimental evaluation to verify the algorithm be-
haviour with respect to either the characteristics of the input graphs, such
as the graph diameter, the variability in the node degrees, the type of node
and arc features or to the model architecture (f.i. type of the state transi-
tion function, of the constraint function, etc.). Furthermore, the proposed
constraint-based scheme can be extended to all the other methods proposed
in the literature that exploit more sophisticated architectures.

6.2.3 Constraining Predictions over time

In Chapter 5 we gave evidence of the fact that the conjunction of a spatio-
temporal input density distribution and an online local entropy estimation
mechanism foster the information transfer in visual streams. Future works
will be devoted to leverage the approach into downstream tasks. Our findings
could, in principle, help in developing more informed features. The proposed
method is indeed an unsupervised learning approach that can be considered
as a pre-training step for supervised tasks.

FOA coherence Since the model for the focus of attention [133] mostly
tracks moving objects, we are currently working on the injection of motion-
coherence into the potential term [132]. The injection of motion invariance
can play a crucial role in reducing the needed supervisions to learn features,
since the model dynamics and the FOA trajectory are able to propagate few
supervisions along the temporal trajectory of the object.

A Lifelong evolving Agent The contribution presented in Chapter 5 is
a step towards the creation of a unifying theory of vision. The final goal is
the design of a visual agent that is able to experience a lifelong visual stream
and progressively learn to recognize objects, disentangle their components and
develop human-like visual cognitive capabilities.
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This agent could highly benefit from the ability to interact and explore
a visual environment. Unfortunately, it is not so easy to collect and store
real-world video streams (e.g. from Video Surveillance cameras [160]) as long
as to supervise each video frame for the task at-hand.

Bearing these issues in mind, we are working on the injection of the pro-
posed method into a simulated Virtual environment [121] that we developed,
capable to completely overcome the need of handmade supervisions. We be-
lieve that this favourable environment can prove the advantages of our lifelong
learning approach, and that a visual agent empowered with our learning mech-
anism can be capable to learn very useful and informed features by navigating
and moving its gaze trough the simulated scenes.
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