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Unsupervised Representation Learning
● Fundamental problem in ML:

○ learn a function g which maps the data in a (usually lower-dim) space where hopefully is 
possible to solve more efficiently a supervised task

● Recent revival of approaches inspired by the InfoMax principle
○ choose representation g(x) maximizing the mutual information between the input and its 

representation 
○ possibly subject to some structural constraints



Information Theory - Entropy 

○ A sender wishes to transmit the value of a random variable to a receiver

○ average amount of info needed to specify the state of a random variable is called Entropy

○ measure of the uncertainty of a probability distribution



Information Theory - Entropy and Relative Entropy (KL-div)

● Relative Entropy 
○ We use an approximating distribution q(x) to model an unknown distribution p(x) 
○ Transmit values of x to a receiver, using q(x) to construct a coding scheme (instead of the true 

p(x))
○ The Relative Entropy is the additional required amount of info 

● Using the true distribution p(x) - code with average description length of H(p) bits (nats)
○ Using q(x), the average required info is (measure of inefficiency)

● Interpretable as a distance measure  between the two distribution



Information Theory - Mutual Information

● Reduction of uncertainty of a r.v. x by virtue of being told the value of y
○ hence, the amount of info that x contains about y

● Alternative formulation
○ KL divergence between the joint density p(x,y) and the product of the marginals

○ if KL ≈ 0, almost independent  -- low info contained about the other one



MI properties (Kraskov et al. 2004)
● Invariant Under Reparametrization of the variables

○ if                        and                        are homeomorphism (i.e. smooth invertible maps), then

○ Estimating Mi in high-dim is difficult
■ often one maximizes a tractable lower-bound



Recent Progress and InfoMax Principle
● Usual problem setup  (Becker and Hinton 1992)

○ Given an image X, let X(1) and X(2)  be different views of X (f.i. top and bottom halves of the image)
○ Encoders g1

 and g2, maximize MI between the two representations, sample base estimator IEST

○ Lower bound of the original InfoMax
○ Advantages of Multi-view formulation 

■ estimate only between learned representation of the views (lower-dim space)
■ modeling flexibility - capture different aspects or modality of the  data



● DeepInfomax

○ in the basic form,  g1
  extracts global features from the entire image X(1) and g2 local features 

from image patches X(2)  

● Contrastive multiview Coding

● Contrastive Predictive Coding, etc.

Various approaches



IEST is a critical choice. Idea:

● If a classifier can accurately distinguish between samples drawn from the joint p(x,y) and those drawn 
from the marginal p(x)p(y), then X and Y have high MI 

○ DV (Donsker and Varadhan, 1983)

○ InfoNCE (van den Oord et al. 2018)
●

■ Expectation is over K independent samples                        from the joint (Monte Carlo 
estimate averaging over multiple batches of samples)

Lower Bounds on MI



Lower Bounds on MI

● Intuitively, the critic function       tries to predict for each xi which of the K samples y1, …., yK it was 
jointly drawn with.

○ Various types: 
■ bilinear                                    
■ separable  
■ concatenated  

○                      are typically shallow multi-layer perceptrons



DeepInfomax 
(Hjelm et al. 
2019)

● Maximize global MI,  between an input data and the 
resulting global feature vector produced by the 
encoder 

○ often insufficient for learning useful representation

● Maximize local MI, the MI between the local and 
global features produced by the encoder.

● Enforce a statistical constraint, to avoid a trivial 
solution to the MI maximization objective

○ usefulness of a representation is not just a matter of 
information content

○ marginal distribution of the encoded features must be 
close to a  statistical prior



DeepInfomax - Base Encoder



DeepInfomax - Global objective 
● Estimate the MI training a classifier to distinguish between samples coming from the joint J 

and the product of marginals M



DeepInfomax - Global objective 
A better visualization:



Lacks of Global MI Maximization
● An encoder  maximizing the MI between the input and output yields representations that contain trivial 

or “noisy” information from the input.

● global DIM biased toward learning unrelated features, as their sum has more unique information than 

redundant locations.

● Want to maximize information that is shared across the input—in this case, across relevant locations.

● To accomplish this, maximize the mutual information between high-level representation and local 

patches



Local MI Maximization
● The high-level representation Y  is encouraged to have high mutual information with all patches
● This favors encoding aspects of the data that are shared across patches



Local MI Maximization
A better visualization:



Match the representation to a Prior
● Impose structural constraint to the obtained representation

○ expect         to learn a representation with some desirable properties 
■ independence, disentanglement  

● Adversarial learning - try to fool a discriminator which distinguishes if the input distribution is from the 
output of the encoder or from the prior distribution



Some results



Biases in approximate Information Maximization
● Folklore knowledge that maximizing MI does not necessarily lead to useful representations

○ Linsker (1988)
○ Bridle et al. (1992)

● To what can we attribute the recent success of several works? (DeepInfomax, CMC, CPC)
○ Loose connection to the InfoMax principle
○ want to show they counter-intuitive behave if one equates them to MI maximization
○ performance depend on bias encoded by encoders and estimators



Setup of Tschannen  et al. (2020)
● Learning a representation of the top half of MNIST images (CIFAR10)

○ xtop (corresponding to X(1)), xbottom (corresponding to X(2))

● Downstream linear evaluation protocol
○ train a linear classifier for digit classification on the learned representation using all train labels

● Train g1,g2, f using ADAM
○ use a bilinear critic for 

● Baseline
○ linear classifier on pixel space on xtop (test accuracy 85%)

Remember:



1) Large MI is not predictive of downstream performance

● Consider bijective encoders (RealNVP, Dinh et al. 2016) g1 and g2

○ Remember that if                        and                        are homeomorphism (i.e. smooth invertible 
maps), then

● Hence for any choice of the encoder parameters, the MI is constant

● If we can compute the exact MI, any parameter choice would be a global maximizer
○ gradients vanish everywhere
○ any instantiation of g1 and g2 

However, the representation quality improves during training

Biased estimators



1) Large MI is not predictive of downstream performance
a) Maximized MI and improved downstream performance

● Despite the fact that MI is maximized for every instantiation of g1 and g2 , IEST  and 
downstream accuracy increase

● Estimators provide gradient leading to a representation useful for linear classification
○ estimators biases encoder towards solution suitable to the downstream task

● Among many invertible encoders (all globally optimal MI maximizers), some give rise to 
improved linear classification performance



● For the same invertible encoders, there are parameters for which linear classification is 
worse than using raw pixels

○ despite also being globally optimal MI maximizers
● Achieve this by adversarial training (encoder vs a linear classifier)

○ train the encoder to make hard the classification task for a linear classifier
○ a separate classifier is trained for the downstream evaluation

1) Large MI is not predictive of downstream performance
b) Maximized MI and worsened downstream performance

(c) Downstream classification 
accuracy of a different invertible 
encoder (with the same 
architecture) trained to have poor 
performance. This demonstrates 
the existence of encoders that 
provably maximize MI yet have bad 
downstream performance.



2) Bias Towards hard-to-invert encoders
● Use a network architecture that can model both invertible and non-invertible functions

○ IEST prefers the net to remain bijective (thus maximizing the true MI - initialized as identity) or 
to ignore part of input signal?

○ To quantify invertibility, analyze the condition number of the Jacobian of g1



2) Bias Towards hard-to-invert encoders
● Proved that:

○ during training, inverting the model becomes increasingly hard

Hence

● the bound prefer hard-to-invert encoders, which heavily attenuate part of the noise
○ they do not maximize the true MI

● well conditioned encoders which preserve the noise are not preferred
○ preserve the noise, hence, the entropy  of the data

● MI and downstream performance are only loosely connected



3) Loose bounds can led to better representations
● How the critic architecture impacts the quality of the learned representation?

○ Remind the role of the critic f: distinguish between samples from joint distr. and product of 
marginals

■ determines the tightness of the lower bound

○ an higher capacity critic should allow for a tighter lower-bound on MI (Belghazi et al. 2018)

○ f is a neural net, provides gradient feedback to g1 and g2 
■ shapes the learned representation



3) Loose bounds can led to better representations
Simple bilinear critic leads to better downstream performances



4) Representation quality impacted more by the choice of encoder 
than  the estimator

● Optimize the estimators to the same MI lower bound
○ with different encoder architectures (MLP, ConvNet)



Conclusions
● Is MI maximization a good objective for learning good representation in unsupervised fashion?

○ possibly, but clearly not sufficient

● Estimators have strong inductive biases
● looser bounds on MI can lead to better representations
● unclear whether the connection to MI is a sufficient/necessary component for 

powerful unsupervised representation learning



Suggestions 
● Alternative measures of information

○ MI is not sufficient for representation learning (hard to estimate, invariant to bijections,..)

○ use a notion of information accounting both the amount of stored info and the geometry of the 
induced space

■ F-information Xu et al. (2020) 
■ other statistical divergences to measure discrepancy between p(x,y) and p(x)p(y)

● Wasserstein distance forces smoothness in encoders



Suggestions 
● Holistic view

○ Downstream performance depends on intricate balance between choices of 
■ critic used to measure info
■ encoders
■ downstream models/evaluation protocol

○ Might be possible to rely on weaker assumptions (i.e. invariances relevant for the downstream 
tasks)

● Go beyond widely used linear evaluation protocol
● Investigation into design decision that matters

○ new methods that take away from goal of estimating MI and place more weight on aspects 
having stronger effects on performances

■ negative sampling strategy
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