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LEARNING IN STRUCTURED DOMAINS

• Non-Euclidean (graph or manifold-structured) data such as social networks, molecular graphs
and 3D point clouds in computer vision
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GRAPH STRUCTURED DATA

• Graph G = (V, E), where V is a finite set of nodes and E ⊆ V× V collects the arcs
• li node i features, l(i,j) arc (i, j) features (both optional)
• Structures allowing to represent relationships
• GOAL Learn a mapping f : V→ Y predicting some graph property (at node/graph level)

2



GRAPH-FOCUSED TASKS
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NODE-FOCUSED TASKS
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GRAPH REPRESENTATION

• Traditional machine learning approaches assume to deal with flat data
• Flat representations relying on summary graph statistics, kernel functions, graph traversals
procedures etc.

• Pre-processing step, using hand-engineered statistics to extract structural information into
simpler encodings

• Limited approaches – loosing useful information, not able to adapt during learning
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EMBEDDING A GRAPH

• Map a graph to a real valued vector12 – concatenate node features, following an order derived
from the connection topology

3

• Not well defined for any category of graph – it holds for Directed Ordered Acyclic Graphs
(DOAGs), does not hold for generic cyclic graphs

1Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “Deepwalk: Online learning of social representations”. In: Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining. 2014, pp. 701–710.
2Aditya Grover and Jure Leskovec. “node2vec: Scalable feature learning for networks”. In: Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. 2016, pp. 855–864.
3Figure credit to William L. Hamilton
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The Graph Neural Network Model



THE GRAPH NEURAL NETWORK MODEL (GNN)

• Introduced by Scarselli et al.4 in 2005
• No need of a preprocessing embedding step
• No limitation on the graph type (more general w.r.t Recursive nets5)
• Neural networks exploited to learn how to encode nodes of a graph for a given task
• Take into account information local to each node and the whole graph topology
• The learning process requires, for each epoch, an iterative diffusion mechanism up to
convergence to a stable fixed point

4Franco Scarselli et al. “Graph neural networks for ranking web pages”. In: The 2005 IEEE/WIC/ACM International Conference on Web Intelligence
(WI’05). IEEE. 2005, pp. 666–672.
5Paolo Frasconi, Marco Gori, and Alessandro Sperduti. “A general framework for adaptive processing of data structures”. In: IEEE transactions on
Neural Networks 9.5 (1998), pp. 768–786.
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GNNS- A TWO PHASES COMPUTATION

• GNNs apply a two-phase computation on each graph G = (V, E)
• Encoding (aggregate) phase compute a state vector xv for each node in V by (iteratively)
combining the states of neighboring nodes (i.e. nodes u, v ∈ V that are connected by an arc
(u, v) ∈ E) – exploiting the state transition function fw

• Output (readout) phase the final latent representations encoded by the states stored in each
node are exploited to compute the model output – exploiting the output function gw
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TRANSITION AND OUTPUT FUNCTIONS
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GRAPH ENCODING

6
6Figure credit to Scarselli et al.
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CONVERGENCE PROCEDURE

• The recursive application of the state transition function fw() on the graph nodes yields a
diffusion mechanism, whose range depends on T

• In the original GNN model7 the convergence procedure is executed until convergence of the
state representation, i.e. until x(t)n ≃ x(t−1)n , v ∈ V.

• Corresponds to the computation of the fixed point of fw() on the input graph.
• To guarantee the convergence of this phase, the transition function is required to be a
contraction map - Banach Fixed Point Theorem

7Franco Scarselli et al. “The graph neural network model”. In: IEEE Transactions on Neural Networks 20.1 (2008), pp. 61–80.
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REACHING EQUILIBRIUM
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GNN FRAMEWORK8

http://sailab.diism.unisi.it/gnn/

8Alberto Rossi et al. “Inductive–transductive learning with graph neural networks”. In: IAPR Workshop on Artificial Neural Networks in Pattern
Recognition. Springer. 2018, pp. 201–212.
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TIMELINE OF GNN MODELS
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9Figure credit to Xavier Bresson
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GRAPH CONVOLUTIONAL NETWORK

• First Order Model Message passing scheme written in matrix form

Hℓ+1 = σ(HℓWℓ
0 + D−

1
2 AD−

1
2HℓWℓ

1 ) (1)

• D− 1
2 AD− 1

2 is the normalized adjacency matrix
• H0 is the matrix of input node features
• Hℓ is the matrix of states at the ℓ-layer, computed aggregating the node from layer below
• Layered structure - depth foster aggregation
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MESSAGE PASSING GRAPH NEURAL NETWORKS

Describe the models under a common framework - MPNN10

• Minimal requirements to design a message passing node aggregation function:
• Permutation invariance
• Independent on neighborhood size (1-hop)
• Exploit same aggregation function among the nodes (gain generalization)
• Linear complexity on the Edges

MPNN

m(ℓ)
i←j = MSGℓ

(
x(ℓ−1)i , x(ℓ−1)j , li, lj, ai←j

)
x(ℓ)i = UPℓ

( ∑
vj∈N∗

i

m(ℓ)
i←j

)

10Justin Gilmer et al. “Neural message passing for quantum chemistry”. In: arXiv preprint arXiv:1704.01212 (2017).
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ISOTROPIC GCN

• In the aggregation phase, every neighbor contributes equally
• Models

• GCN11
• GraphSAGE12

• Every direction is treated in the same way

11Thomas N Kipf and Max Welling. “Semi-supervised classification with graph convolutional networks”. In: arXiv preprint arXiv:1609.02907 (2016).
12Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation learning on large graphs”. In: Advances in neural information processing
systems. 2017, pp. 1024–1034.

17



ANISOTROPIC GCN

• Gaining a directional structure
• Adding Edge Features if available13
• Learn anisotropy to treat neighbors differently

• Graph Attention Networks14
• MoNet15

13Scarselli et al., “The graph neural network model”; Gilmer et al., “Neural message passing for quantum chemistry”.
14Petar Veličković et al. “Graph attention networks”. In: arXiv preprint arXiv:1710.10903 (2017).
15Federico Monti et al. “Geometric deep learning on graphs and manifolds using mixture model cnns”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2017, pp. 5115–5124.
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Theoretically Expressive GNNs



WEISFELER-LEHMAN GNNS

• Study expressivity power of GNNs through isomorphism
• Two graph are isomorphic if topologically equivalent

• There exist a node index permutation preserving adjacencies
• The Weisfeler-Lehman test16 guarantee that two graphs are not isomorphic

• Not sufficient to guarantee isomorphism

16Boris Weisfeiler and Andrei A Lehman. “A reduction of a graph to a canonical form and an algebra arising during this reduction”. In:
Nauchno-Technicheskaya Informatsia 2.9 (1968), pp. 12–16.
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WL TEST

• Multiset: set that allows multiple instances for its elements
• Defining a coloring function fWL that given a node and its neighborhood, hashes a color:

c(t+1)i = fWL(cti , {ctj}j∈Ni) (2)

• fWL must be defined on multiset and map different inputs to different ouputs - injective
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WL TEST

• Iteratively apply the coloring function fWL until color convergence
• Graph represented by an histogram

• if histogram is different→ non-isomorphic
• if same histogram→ not sufficient condition for isomorphism

17

17Figure credit to Xavier Bresson
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GRAPH ISOMORPHISM NETWORK

• Design a GNN able to distinguish non-isomorphic graphs - GIN18

• same representational power of WL test

c(t+1)i = fWL(cti , {c
t
j}j∈Ni ) (3)

• Use an injective aggregation function→ Sum

19

• Mean captures the proportion/distribution of elements of a given type
• Max ignores multiplicities (reduces the multiset to a simple set).

18Keyulu Xu et al. “How powerful are graph neural networks?” In: arXiv preprint arXiv:1810.00826 (2018).
19Figure credit to Keyulu Xu et al.
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GRAPH ISOMORPHISM NETWORK

• Design a GNN able to distinguish non-isomorphic graphs - GIN20

• same representational power of WL test

c(t+1)i = fWL(cti , {c
t
j}j∈Ni ) (4)

• Use an injective aggregation function

• Cons – WL test is not a sufficient condition and can fail to distinguish non-isomorphic graphs

20Xu et al., “How powerful are graph neural networks?”
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MORE EXPRESSIVE MODELS – K-WL AND BEYOND
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OTHER TRENDS AND APPLICATIONS

• Benchmarking GNNs21 - evaluate GNNs under same experimental setting22

• Scale to bigger graphs23 and real-world tasks (physics, mobility prediction, COVID-19
forecasting24)

21Vijay Prakash Dwivedi et al. “Benchmarking graph neural networks”. In: arXiv preprint arXiv:2003.00982 (2020).
22Federico Errica et al. “A fair comparison of graph neural networks for graph classification”. In: arXiv preprint arXiv:1912.09893 (2019).
23Aleksandar Bojchevski et al. “Scaling graph neural networks with approximate pagerank”. In: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2020, pp. 2464–2473.
24Amol Kapoor et al. “Examining covid-19 forecasting using spatio-temporal graph neural networks”. In: arXiv preprint arXiv:2007.03113 (2020).
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A Lagrangian Approach to Information
diffusion in GNNs

LP-GNNs
Matteo Tiezzi, Giuseppe Marra, Stefano
Melacci, Marco Maggini, Marco Gori



MESSAGE PASSING GRAPH NEURAL NETWORKS

Recent debate on capabilities and expressive power of message-passing graph neural networks
(MPNN).

MPNN

m(ℓ)
i←j = MSGℓ

(
x(ℓ−1)i , x(ℓ−1)j , li, lj, ai←j

)
x(ℓ)i = UPℓ

( ∑
vj∈N∗

i

m(ℓ)
i←j

)

In these models, layerwise feature extraction fosters message propagation:

• Pros25 – Turing universal if their capacity (width * depth) is large enough
• Cons26 – Many layers will wash away node features information

25Andreas Loukas. “What graph neural networks cannot learn: depth vs width”. In: International Conference on Learning Representations. 2019.
26Qimai Li, Zhichao Han, and Xiao-Ming Wu. “Deeper insights into graph convolutional networks for semi-supervised learning”. In: Thirty-Second AAAI
Conference on Artificial Intelligence. 2018.

26



GRAPH NEURAL NETWORKS

By Scarselli et al. – a more general message passing process on graphs:

GNN

x(t+1)v = fa(x(t)ne[v], lne[v], lv, av←ne[v])

yv = fr(x(T)v )

Node update is repeated until convergence of the state representation, i.e. until x(T)v ≃ x(T−1)v , v ∈ V.
Hence, fa reaches its fixed point, satisfying the constraint:

∀v ∈ V, xv = fa,v .
• Pros – Diffusion mechanism involving all the graph, not only a k-hop neighborhood (k layers).
• Cons – Epoch wise ad-hoc iterative convergence and BackProp.
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LAGRANGIAN PROPAGATION GRAPH NEURAL NETWORKS – LP-GNNS

• Avoid the explicit iterative computation of the fixed point.
• Cast the learning problem as constrained optimization.
• Add free variables xv (to be optimized) corresponding to the node states.

Problem

min
Θfa ,θfr ,X

∑
v∈S

L(fr(xv), yv)

subject to G(xv − fa,v) = 0, ∀ v ∈ V

With G(0) = 0. Enforce the constraint satisfaction – express relationship between each node and its
neighborhood.

Model evolution:

• Introduce a set of K states for each node v ∈ V, organized into K layers, {xv,k, k = 0, . . . , K− 1}.
• Node states as additional input to the upper layer state transition function fka.

G(xv,k − fka,v) = 0, ∀ v ∈ V, ∀ k ∈ [0, K− 1]
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CONSTRAINTS TOLERANCE - G FUNCTION

G(a) = lin-ϵ(a) := max{a, ε} −max{−a, ε} = ,

G(a) = abs-ϵ(a) := max{|a| − ε, 0} = .

Table 1: The considered variants of the G function. By introducing ϵ-insensitive constraint satisfaction, we can inject into our hard-optimization
scheme a controlled amount (i.e. ϵ) of unsatisfaction tolerance.

lin lin-ϵ abs abs-ϵ squared

G(a) a max(a, ϵ)− max(−a, ϵ) |a| max(|a| − ϵ, 0) a2

Unilateral × × ✓ ✓ ✓
ϵ-insensitive × ✓ × ✓ ×

• Stabilize the learning process
• Improved generalization and tolerance to noise
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A LAGRANGIAN APPROACH

We tackle the constrained problem introducing the Lagrangian

L(θfa , θfr , X,Λ) =
∑
v∈S

[
L(fr(xv), yv) +

K−1∑
k=0

λkvG (xv − fa,v)
]

and then looking for saddle points of this function, in a gradient ascent-descent scheme27.

min
Θfa ,θfr ,X

max
Λ

L(Θfa , θfr , X,Λ)

27John C Platt and Alan H Barr. “Constrained differential optimization”. In: Neural Information Processing Systems. 1988, pp. 612–621.
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MOTIVATIONS AND STRENGTHS

• Jointly optimize the model weights and the state representations without the need of separate
ad-hoc optimization stages.

• Diffuse information layerwise by gradually enforcing the convergence of the state transition
function to a fixed point (by virtue of the constraints).

• LP-GNNs28 strictly split deep feature extraction from the diffusion mechanism.
• Our scheme can be plugged into all SOTA models, leveraging powerfull aggregation functions
empowered by diffusion over the graph.

28Matteo Tiezzi et al. “A Lagrangian Approach to Information Propagation in Graph Neural Networks”. In: vol. 325. Giacomo, Giuseppe De. IOS Press,
2020, pp. 1539–1546. URL: https://doi.org/10.3233/FAIA200262.
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EXPERIMENTS – SUBGRAPH MATCHING AND CLIQUE DETECTION

Table 2: Accuracies on the artificial datasets, for the proposed model (Lagrangian Propagation GNN - LP-GNN) and the standard GNN model for
different settings.

Model Subgraph Clique

G ϵ Acc(avg) Acc(std) Acc(avg) Acc(std)

LP-GNN

abs
0.00 96.25 0.96 88.80 4.82
0.01 96.30 0.87 88.75 5.03
0.10 95.80 0.85 85.88 4.13

lin
0.00 95.94 0.91 84.61 2.49
0.01 95.94 0.91 85.21 0.54
0.10 95.80 0.85 85.14 2.17

squared - 96.17 1.01 93.07 2.18

GNN - - 95.86 0.64 91.86 1.12
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EXPERIMENTS – GRAPH CLASSIFICATION

Table 3: Average and standard deviation of the classification accuracy on the graph classification benchmarks, evaluated on the test set, for
different GNN models.

Datasets IMDB-B IMDB-M MUTAG PROT. PTC NCI1
# graphs 1000 1500 188 1113 344 4110
# classes 2 3 2 2 2 2
Avg # nodes 19.8 13.0 17.9 39.1 25.5 29.8

DCNN 49.1 33.5 67.0 61.3 56.6 62.6
PATCHYSAN 71.0± 2.2 45.2± 2.8 92.6± 4.2 75.9± 2.8 60.0± 4.8 78.6± 1.9
DGCNN 70.0 47.8 85.8 75.5 58.6 74.4
AWE 74.5± 5.9 51.5± 3.6 87.9± 9.8 – – –
GRAPHSAGE 72.3± 5.3 50.9± 2.2 85.1± 7.6 75.9± 3.2 63.9± 7.7 77.7± 1.5
GIN 75.1± 5.1 52.3± 2.8 89.4± 5.6 76.2± 2.8 64.6± 7.0 82.7± 1.7
GNN 60.9± 5.7 41.1± 3.8 88.8± 11.5 76.4± 4.4 61.2± 8.5 51.5± 2.6
LP-GNN-SINGLE 71.2± 4.7 46.6± 3.7 90.5± 7.0 77.1± 4.3 64.4± 5.9 68.4± 2.1
LP-GNN-MULTI 76.2± 3.2 51.1± 2.1 92.2± 5.6 77.5± 5.2 67.9± 7.2 74.9± 2.4
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ADDITIONAL EXPERIMENTS – STATE EVOLUTION IN FEATURELESS DATA

• Completely removed node-attached features from the Karate Club dataset, in order to exploit
only topological properties.

• No dependence on node features (l0v ), the states are continuous representations of topological
features of the nodes in the graph.
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ADDITIONAL EXPERIMENTS – DEPTH VS DIFFUSION

• GCN-like models need to stack multiple layers to achieve information diffusion.
• Some tasks suffice a shallow representation of the nodes, but still need a diffusion process to
take place.

• LP-GNN naturally model this diffusion, without the need of deep architectures: the diffusion
process is independent of the depth of the network.

Table 4: Average test accuracy on the IMDB-B dataset for LP-GNN and GIN model with state layers K ∈ [1, 5].

Model Number of State Layers
1 2 3 5

GIN29 52 72.6 72.7 75.1
LP-GNN 71.2 73.7 73.9 76.2

29Keyulu Xu et al. “How Powerful are Graph Neural Networks?” In: International Conference on Learning Representations. 2018.
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Thank you for listening!

A Lagrangian Approach to Information Propagation in Graph Neural Networks

LPGNN-Single (ECAI 2020): https://arxiv.org/abs/2002.07684
Technical report – Deep LPGNN: https://arxiv.org/abs/2005.02392

GNN framework (TF) : https://github.com/sailab-code/gnn
GNN framework (PyTorch) : https://github.com/mtiezzi/torch_gnn

GNN documentation: http://sailab.diism.unisi.it/gnn
LP-GNNs repository: https://github.com/mtiezzi/lpgnn

Matteo Tiezzi
https://mtiezzi.github.io/

@TiezziMatteo
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