LAGRANGIAN PROPAGATION
GRAPH NEURAL NETWORKS

Matteo Tiezzi
December 4, 2020

SAlLab, University of Siena
https://sailab.diism.unisi.it
https://mtiezzi.github.io/

Y@TiezziMatteo

odi_ SAlLab

Siena Artificial Intelligence Lab

https://sailab.diism.unisi.it
https://mtiezzi.github.io/

LEARNING IN STRUCTURED DOMAINS

"il’a
"m

t b*t

Somal networks

Graphs/
Networks

Functional networks 3D shapes

- Non-Euclidean (graph or manifold-structured) data such as social networks, molecular graphs
and 3D point clouds in computer vision

GRAPH STRUCTURED DATA

1-hop neighberhood of
-, the node

- Graph G = (V,E), where V is a finite set of nodes and E C V x V collects the arcs
- li node i features, ((; j, arc (i,j) features (both optional)
- Structures allowing to represent relationships

- GOAL Learn a mapping f: V — Y predicting some graph property (at node/graph level)

GRAPH-FOCUSED TASKS

7(6)

On the truth of logic statements Pragram behavior

program name (list); Y
(¥(a, B),n(7),9) e, n(7),%(7, d(a, B))) e "‘<Z\,“,_
— begin '_' 7
9 "I e r, 4
- b; \ :;/
¥(-,-) () hile T2do - T
/3 G
@ “_ = |
@ @ if T3 then = |
while 74 do "
@ end; 5
f &
NH, end. X
Cl = ‘ \.‘\
1 . . .
N Y S N, Physicochemical behavior
CH,

NODE-FOCUSED TASKS

) 7(G, n)
Social nets

here we need to make prediction at node level!

Social networks

Citation networks °
Communication networks
Multi-agent systems

Karate club network
Protein Interaction Network

GRAPH REPRESENTATION

- Traditional machine learning approaches assume to deal with flat data

- Flat representations relying on summary graph statistics, kernel functions, graph traversals
procedures etc.

- Pre-processing step, using hand-engineered statistics to extract structural information into
simpler encodings

Encoding

Input graph Fixed-size
representation

- Limited approaches - loosing useful information, not able to adapt during learning

EMBEDDING A GRAPH

- Map a graph to a real valued vector'? - concatenate node features, following an order derived
from the connection topology

1st 2nd ~\3rd

encode node

EEETN

2nd
Zi 1st 1st 1st 2nd

(embedding)
[O @

- Not well defined for any category of graph — it holds for Directed Ordered Acyclic Graphs
(DOAGs), does not hold for generic cyclic graphs

TBryan Perozzi, Rami Al-Rfou, and Steven Skiena. “Deepwalk: Online learning of social representations”. In: Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining. 2014, pp. 701-710.

2Aditya Grover and Jure Leskovec. “node2vec: Scalable feature learning for networks”. In: Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. 2016, pp. 855-864.

3Figure credit to William L. Hamilton

The Graph Neural Network Model

THE GRAPH NEURAL NETWORK MODEL (GNN)

- Introduced by Scarselli et al.* in 2005

- No need of a preprocessing embedding step

- No limitation on the graph type (more general w.rt Recursive nets®)

- Neural networks exploited to learn how to encode nodes of a graph for a given task
- Take into account information local to each node and the whole graph topology

- The learning process requires, for each epoch, an iterative diffusion mechanism up to
convergence to a stable fixed point

“Franco Scarselli et al. “Graph neural networks for ranking web pages”. In: The 2005 IEEE/WIC/ACM International Conference on Web Intelligence

(WI'05). IEEE. 2005, pp. 666-672.
®Paolo Frasconi, Marco Gori, and Alessandro Sperduti. “A general framework for adaptive processing of data structures”. In: [EEE transactions on

Neural Networks 9.5 (1998), pp. 768-786.

GNNS- A TWO PHASES COMPUTATION

- GNNs apply a two-phase computation on each graph G = (V,E)

- Encoding (aggregate) phase compute a state vector x, for each node in V by (iteratively)
combining the states of neighboring nodes (i.e. nodes u,v € V that are connected by an arc
(u,v) € E) - exploiting the state transition function f,

- Output (readout) phase the final latent representations encoded by the states stored in each
node are exploited to compute the model output — exploiting the output function g,

TRANSITION AND OUTPUT FUNCTIONS

Neighbors state

Nelghbors features

20—
fa(] lv’l(nev] lof“) (SUM) _ Z h(@us Ly oy L) | On)
Yo = fr(Tv (T) ‘Gf’ Arc feature ucnelv]
Node feature
AVG)
he) = ok Zh (@us Lus Loy L) | 61)
u€n€ 'U

GRAPH ENCODING

2.3) 2~
()
N /
IU-‘U\‘/,A\ 4.3)

NG

0,(1)
)
Iy | 8w/

[}

1 1,
1) 3
Pt T ”)x_,u;‘ w =g 1
0,(1)= 8w Selly) — 8w = 03(1)

x5 (1) x;(1)

» 3
L) —fw x, (1) ,\—,,“/t‘.,w = Ll - Sw -

X))/
A\
Xy (1)
i L Fw = a4y ;
fw
gw}‘ Iy w

\J
0,(1)

bFigure credit to Scarselli et al.

CONVERGENCE PROCEDURE

- The recursive application of the state transition function f,() on the graph nodes vields a
diffusion mechanism, whose range depends on T

- In the original GNN model’ the convergence procedure is executed until convergence of the
state representation, i.e. untilef) ~ X(n[_”, vev.

- Corresponds to the computation of the fixed point of f.() on the input graph.

- To guarantee the convergence of this phase, the transition function is required to be a
contraction map - Banach Fixed Point Theorem

’Franco Scarselli et al. “The graph neural network model”. In: IEEE Transactions on Neural Networks 201 (2008), pp. 61-80.

REACHING EQUILIBRIUM

How we get the equilibrium points?

Pl 4
) 1; 8w
Q TR | I
v 2 Sw =g 1
>< 0,(1)= 8w B/l i = Gy = 0;(1)
Q W01 o I e
3 Ly - <[fa Cqw | xymddwl= Lol - Ewl
S
x, 0 re
—+ Sw =Ll
(@) 2l 1, fw
2
Ty (t + 1) = fuwlns leofn]s Tnefn] (1), bne[n])
o
2 ' 0.(t) = gw(.(t),1,), neN.
_— 1, L
o e nl”
= 1, L,
= @0[gl= -
3 s iy EB(E4+ 1) = Fy(z(t),1)
< aw s Jw
1y [
29 gul= ful™

time

GNN FRAMEWORK

http://sailab.diism.unisi.it/gnn/

Input data

As described in Matrix-based implementation, the computations are based on the arcs in the input

graphs. Hence, inputs to the model must be specified as an ordered edge list.

Graph Neural Networ . " L
Caoh Netral Netork In particular, for each edge, this structure (11) must contain:

Install and img

PyTorch Tutorial « the id of the child node (used to gather its state)

Tensorflow Tutorial « the father and child node labels

+ the edge label (if available)
Simple usage example:

Simple toy example for input INPUT
formatting LY O b i
Descrition oe) e g
e S T - s
St sl cutiut Action defbi © ER cen e
Trining ©) 2Et e
Validation SOE e
Evalate

Predict

We provide a novel utiity to compose this kind of input, given a description of the graph
dataset in an E-N format. See section EN Input.

ArcNode
1F TensorFlow

Examples In order to aggregate the state per node, a matrix multiplication with an edge-node matrix is
performed. The matrix encodes which arcs affect a certain node (see Matrix-based implementation).
This matrix (arcnce) is sparse, to save memory.

PYTHRCH

8Alberto Rossi et al. “Inductive-transductive learning with graph neural networks”. In: IAPR Workshop on Artificial Neural Networks in Pattern
Recognition. Springer. 2018, pp. 201-212.

http://sailab.diism.unisi.it/gnn/

TIMELINE OF GNN MODELS

[10] Xu-etal, 2019
[11] Morris-etal, 2019
[12] Maron-etal, 2019
[13] Maron-etal, 2019
[14] Chen-etal, 2019

[4] Sukhbaatar-etal’16
[5] Kipf- Welling'17
[6] Hamilton-etal’17

m

/' [1] Scarselli-etal’09

t t t }
2009 2016 2017 2019

N [2] Bruna-etal’13 [7] Monti-etal'17 i designed

¥ 1 [8] Velickovic-etal’17 theoretically

[3] Defferrard-etal'16

[9] B-Laurent’17 expressive GNNs.

ass designed
better (non-linear) node
aggregation equations.
[1] Scarselli, Gorl, Teoi, Hagenbuchner, Monfardini, The Graph Neural Network Model, 2000
and locally mmdmwwbvnmphl. 2013
localized spectral fltering, 2016

learning
7] Monti, Boscaini, Masci, Rodola, Svoboda, Bronstein, mmmmmMmmM,mu
elickovie, Cucurull, Casanova,

ph
ipman, Provably powerful graph networks, 2019
[14] Chen, Villar, Chen, Bruns, On mmvdmmphmmphmmmmﬁmmwaﬁmwi&mmw

Apologize for not citing more works (4000-+ GNN papers).

9F\gure credit to Xavier Bresson

Developing powerful
GNNss for real-world
adoption of graph
deep learning.

GRAPH CONVOLUTIONAL NETWORK

ReLU Sum/mean
N]
e+ = U(Wf B+ Y Wg‘hﬁ),/m’“
jENi
B+l g RP*den Bt @ RPN L, € Rieraxde

layer ¢ layer £+ 1

- First Order Model Message passing scheme written in matrix form

H = (WS + D™ 2AD™ T H WY) (1)
- D=2AD"7 is the normalized adjacency matrix
- H%is the matrix of input node features

- H%is the matrix of states at the ¢-layer, computed aggregating the node from layer below

- Layered structure - depth foster aggregation

MESSAGE PASSING GRAPH NEURAL NETWORKS

Describe the models under a common framework - MPNN™

- Minimal requirements to design a message passing node aggregation function:

- Permutation invariance

- Independent on neighborhood size (1-hop)

- Exploit same aggregation function among the nodes (gain generalization)
- Linear complexity on the Edges

MPNN

m,(i)l = MSGy (X’(Z71),XI(Z71)7 i lj, G,'Hj)

W = UP[(Z m/(i)/)

ViEN*

0justin Gilmer et al. “Neural message passing for quantum chemistry”. In: arXiv preprint arXiv:1704.01212 (2017).

ISOTROPIC GCN

- In the aggregation phase, every neighbor contributes equally
- Models

- GCNT

- GraphSAGE™

- Every direction is treated in the same way

""Thomas N Kipf and Max Welling. “Semi-supervised classification with graph convolutional networks”. In: arXiv preprint arXiv:1609.02907 (2016).
2will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation learning on large graphs”. In: Advances in neural information processing
systems. 2017, pp. 1024-1034.

ANISOTROPIC GCN

- Gaining a directional structure

- Adding Edge Features if available™
Learn anisotropy to treat neighbors differently
- Graph Attention Networks'™
- MoNet™

W= o (WE BE+ Y nf;WERS), BT e Rxdens, pf g R, WY, € R X,
JEN:

My = 9w (b, h)

s
exple; .
Rl . = Softmaxy, (ef]) = L’[
ttention mechanism zj’GNi exp(e”,)
[michop A BN ey dayaxde
neighborhood with €ij = (VVth) (WK’LJ), WQ, Wik e R
Query Key
Isotropic
weights

Bscarselli et al, “The graph neural network model”; Gilmer et al., “Neural message passing for quantum chemistry”.

Tpetar Velickovi¢ et al. “Graph attention networks”. In: arXiv preprint arXiv:1710.10903 (2017).

5Federico Monti et al. “Geometric deep learning on graphs and manifolds using mixture model cnns”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2017, pp. 5115-5124.

Theoretically Expressive GNNs

WEISFELER-LEHMAN GNNS

- Study expressivity power of GNNs through isomorphism

- Two graph are isomorphic if topologically equivalent
- There exist a node index permutation preserving adjacencies

- The Weisfeler-Lehman test'® guarantee that two graphs are not isomorphic
- Not sufficient to guarantee isomorphism

Isomorphic
graphs

Graph 2

Graph 1

"©Boris Weisfeiler and Andrei A Lehman. “A reduction of a graph to a canonical form and an algebra arising during this reduction”. In:
Nauchno-Technicheskaya Informatsia 2.9 (1968), pp. 12-16.

WL TEST

- Multiset: set that allows multiple instances for its elements
Defining a coloring function fw, that given a node and its neighborhood, hashes a color:

¢ = fu(ch, {Yjens)

fwr must be defined on multiset and map different inputs to different ouputs - injective

Different

ame @ color
f\“() S fm() (G 00) % fm(g©)
©
fw(F{C,0H=@ S (F,{C,CH)= .

fw(F{C,CON=@ fwe(F{0,C,CH=@

20

WL TEST

- Iteratively apply the coloring function fw, until color convergence
- Graph represented by an histogram

- if histogram is different — non-isomorphic
- if same histogram — not sufficient condition for isomorphism

504, (90, (989, (594, 994,

Graph 2 Step 1 Step 3 Step 4
No new colors created,

Q) Oss‘ algorithm stops.
e8| ol
o®
®

Graph 1 Histogram of colors Graph 2 Histogram of colors

WF\gure credit to Xavier Bresson

21

GRAPH ISOMORPHISM NETWORK

- Design a GNN able to distinguish non-isomorphic graphs - GIN'™
- same representational power of WL test

< = fun (e {Yjenr) (3)

- Use an injective aggregation function — Sum

T 9 r - b

T T M T |
v @ | 4 o © L L @
(a) Mean and Max both fail (b) Max fails (c) Mean and Max both fail 19

- Mean captures the proportion/distribution of elements of a given type

- Max ignores multiplicities (reduces the multiset to a simple set).

18Keyulu Xu et al. “How powerful are graph neural networks?” In: arXiv preprint arXiv:1810.00826 (2018).
VFigure credit to Keyulu Xu et al.

22

GRAPH ISOMORPHISM NETWORK

- Design a GNN able to distinguish non-isomorphic graphs - GIN%
- same representational power of WL test

cf[“) = fun(c,, {Cf}je/\f,) “

- Use an injective aggregation function

B = fan (R, {08 jens) = MLPE((1+6)hf +y hj)
JEN;

- Cons — WL test is not a sufficient condition and can fail to distinguish non-isomorphic graphs

O~ O l ©
i @@ =
CoCe® ::x:; ©0 ©o°

Graph 1 Graph 2

20xy et al,, “How powerful are graph neural networks?”

23

MORE EXPRESSIVE MODELS - K-WL AND BEYOND

MP-GCNs
Vanila GONe [WL C;wa\llvl:s[;?]
raphSage [2] GIN [5] Ohng(nf) /O(r) k-WL GNNs [9]
nS;T [l) o(n) Mok etat [l)
Qs OG('S)NB[1 O(n3)/O(n4)
:hﬁ‘;ﬁ < 1LWL/2WL < 3 WL < kWL

! 1
T T T
Capture higher-order
graph properties
G=(V,E)

[1] Kipt, We Semi with graph natworh. m'r

[B]Iiamﬂwn.‘.ﬁng,lmkwec Inductive representation learning on large graphs, 20!

[3] Velickovic, Cucurull, Romero, Lio, Bengio, Graph attentmnmatwurlﬁ 2017

[4] Bresson, Laurent, Residual gated graph convnets, 2017

[5] Xu, Hu, Leskovec, agalh,]lﬂwpawaﬁllnreynphne\nnlnetwmh? 2019

ﬂ]an Ben-Hamu, Serviansky, Lipman, Provably powerful graph networks, 2019

[7] Chen, Villar, Chen, Bruna, On the equivalence between graph isomorphism testing and function approximation with gnns, 20!

[8] Morris, R.it:m,Fsy,Eamihm. , Rattan, Grohe, Weisfeiler and leman go neural: m@mmmmﬁ,ms
[9] Maron, Ben-Hamu, Shamir, Lipman, Immmnt and equivariant graph networks, 2019

%

OTHER TRENDS AND APPLICATIONS

DGL ® PyTorch IR Spekiral
Matthiss Fey

- Benchmarking GNNs?' - evaluate GNNs under same experimental setting? S&ime st

- Scale to bigger graphs® and real-world tasks (physics, mobility prediction, COVID-19
forecasting®)

Water

“Goop”

Sand

Mexico

Time —————

21vijay Prakash Dwivedi et al. “Benchmarking graph neural networks”. In: arXiv preprint arXiv:2003.00982 (2020).
22Federico Errica et al. “A fair comparison of graph neural networks for graph classification”. In: arXiv preprint arXiv:1912.09893 (2019).
Zpleksandar Bojchevski et al. “Scaling graph neural networks with approximate pagerank”. In: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2020, pp. 2464-2473.
Z4Amol Kapoor et al. “Examining covid-19 forecasting using spatio-temporal graph neural networks”. In: arXiv preprint arXiv:2007.03113 (2020).
25

A Lagrangian Approach to Information
diffusion in GNNs
LP-GNNs
Matteo Tiezzi, Giuseppe Marra, Stefano
Melacci, Marco Maggini, Marco Gori

MESSAGE PASSING GRAPH NEURAL NETWORKS

Recent debate on capabilities and expressive power of message-passing graph neural networks

(MPNN).
MPNN
m®, = Msce (K, 1 ai)
X8 = UPe(> mff_)j)

ViEN*

In these models, layerwise feature extraction fosters message propagation:

- Pros” - Turing universal if their capacity (width * depth) is large enough

- Cons® = Many layers will wash away node features information

ZAndreas Loukas. “What graph neural networks cannot learn: depth vs width”. In: International Conference on Learning Representations. 2019.
26Qimai Li, Zhichao Han, and Xiao-Ming Wu. “Deeper insights into graph convolutional networks for semi-supervised learning”. In: Thirty-Second AAAI
Conference on Artificial Intelligence. 2018.

26

GRAPH NEURAL NETWORKS

By Scarselli et al. - a more general message passing process on graphs:

GNN

X(vt-H) = fa(Xge)[v]’ lneps lvs Qvenep)

W =)

Node update is repeated until convergence of the state representation, i.e. untilxy) ~ x(f*]

Hence, fq reaches its fixed point, satisfying the constraint:

),vev,

Y eV, Xy =fay -
- Pros - Diffusion mechanism involving all the graph, not only a k-hop neighborhood (k layers).

- Cons - Epoch wise ad-hoc iterative convergence and BackProp.

27

LAGRANGIAN PROPAGATION GRAPH NEURAL NETWORKS - LP-GNNS

- Avoid the explicit iterative computation of the fixed point.
- Cast the learning problem as constrained optimization.
- Add free variables x, (to be optimized) corresponding to the node states.

Problem

min SOLEX).0)

efa’efr’x ves

subjectto G(xv —fay) =0, VveV

With G(0) = 0. Enforce the constraint satisfaction — express relationship between each node and its
neighborhood.

Model evolution:

- Introduce a set of K states for each node v € V, organized into K layers, {x, s, R =0,...,K—1}.
- Node states as additional input to the upper layer state transition function f&.

GOur—fi) =0, YveV,Vkel[0o,K—1]

28

CONSTRAINTS TOLERANCE - G FUNCTION

G(a) = lin-e(a) := max{a,e} — max{—a,e} = /7

G(a) = abs-¢(a) := max{|a] —,0} = v

Table 1: The considered variants of the G function. By introducing e-insensitive constraint satisfaction, we can inject into our hard-optimization
scheme a controlled amount (i.e. €) of unsatisfaction tolerance.

‘ lin ‘ lin-e ‘ abs ‘ abs-€ ‘ squared
G(a) a max(a, €) — max(—a,€) | Ja| | max(|a] — €,0) a®
Unilateral X X ' v v
e-insensitive X v X v X

- Stabilize the learning process

- Improved generalization and tolerance to noise

29

A LAGRANGIAN APPROACH

We tackle the constrained problem introducing the Lagrangian

K—1

L0001, X N) = D (L) 00) + D MG (00 = fo)]

veS k=0

and then looking for saddle points of this function, in a gradient ascent-descent scheme?.

i L(Oy,, 6, X, A
omin max L{Or, 0, X A)

8@ <0

§®)>0
A -+

?7John C Platt and Alan H Barr. “Constrained differential optimization”. In: Neural Information Processing Systems. 1988, pp. 612-621.

30

MOTIVATIONS AND STRENGTHS

- Jointly optimize the model weights and the state representations without the need of separate
ad-hoc optimization stages.

- Diffuse information layerwise by gradually enforcing the convergence of the state transition
function to a fixed point (by virtue of the constraints).

- LP-GNNs? strictly split deep feature extraction from the diffusion mechanism.

- Our scheme can be plugged into all SOTA models, leveraging powerfull aggregation functions
empowered by diffusion over the graph.

Z8Matteo Tiezzi et al. “A Lagrangian Approach to Information Propagation in Graph Neural Networks”. In: vol. 325. Giacomo, Giuseppe De. 10S Press,
2020, pp. 1539-1546. URL: https://doi.org/10.3233/FAIA200262.

31

https://doi.org/10.3233/FAIA200262

EXPERIMENTS - SUBGRAPH MATCHING AND CLIQUE DETECTION

Table 2: Accuracies on the artificial datasets, for the proposed model (Lagrangian Propagation GNN - LP-GNN) and the standard GNN model for
different settings.

. \ Subgraph Clique
g e | Acclavg) Acc(std) | Acclavg) Acc(std)
0.00 96.25 0.96 88.80 482
abs 0.01 96.30 0.87 88.75 503
0.10 95.80 0.85 85.88 413
LP-GNN

0.00 95.94 091 84.61 2.49
lin 0.01 95.94 091 8521 0.54
0.10 95.80 0.85 85.14 217
squared - | 9617 101 | 9307 2.18
GNN - - | 9586 064 | 9186 112

32

EXPERIMENTS - GRAPH CLASSIFICATION

Table 3: Average and standard deviation of the classification accuracy on the graph classification benchmarks, evaluated on the test set, for
different GNN models.

Datasets IMDB-B IMDB-M MUTAG PROT. PTC NCI1

graphs 1000 1500 188 1113 344 4110

classes 2 3 2 2 2 2

Avg # nodes 19.8 13.0 17.9 39.1 255 29.8
DCNN 49.1 335 67.0 61.3 56.6 62.6
PATCHYSAN 710 £ 22 452 +£28 92.6 + 4.2 759 £ 28 60.0 + 4.8 786 £ 19
DGCNN 70.0 47.8 85.8 75.5 58.6 744
AWE 745 +£59 515+ 36 879 4+£98 - - -
GRAPHSAGE 723153 509 + 22 8514176 759 + 3.2 639 £+ 7.7 777 £ 15
GIN 751 4£51 523+ 1238 89.4 + 5.6 762 £28 64.6 + 7.0 827+ 17
GNN 60.9 £ 5.7 411+ 38 88.8 + 115 76.4 £ 4.4 612 + 85 515+ 26

LP-GNN-SINGLE 712 £ 47 46.6 + 3.7 905+ 70 771 £ 43 644 £59 684 421
LP-GNN-MuLTI 76.2 32 511421 922 +56 77.5+52 679+ 72 749 £ 2.4

33

ADDITIONAL EXPERIMENTS - STATE EVOLUTION IN FEATURELESS DATA

- Completely removed node-attached features from the Karate Club dataset, in order to exploit
only topological properties.

- No dependence on node features ([%), the states are continuous representations of topological
features of the nodes in the graph.

4 Node state embedding 4 Node state embedding 4 Node state embedding
3 3 3
2 2 *% ® 2 ° 5
o o . o~ s
x x o x
1 1 o 1
x4 <.
0 0 & 0 .
» -1 -1
-1 0 1 2 3 4 -1 0 1 2 3 4 -1 0 1 2 3 4
X1 X1 X1

34

ADDITIONAL EXPERIMENTS - DEPTH VS DIFFUSION

- GCN-like models need to stack multiple layers to achieve information diffusion.

- Some tasks suffice a shallow representation of the nodes, but still need a diffusion process to
take place.

- LP-GNN naturally model this diffusion, without the need of deep architectures: the diffusion
process is independent of the depth of the network.

Table 4: Average test accuracy on the IMDB-B dataset for LP-GNN and GIN model with state layers K € [1, 5].

Number of State Layers

Model ‘ 1) 3 5
GIN? 52 726 727 751
LP-GNN | 712 737 739 762

79Keyulu Xu et al. “How Powerful are Graph Neural Networks?" In: International Conference on Learning Representations. 2018.

35

Thank you for listening!

A Lagrangian Approach to Information Propagation in Graph Neural Networks

LPGNN-Single (ECAI 2020): https://arxiv.org/abs/2002.07684
Technical report — Deep LPGNN: https://arxiv.org/abs/2005.02392
GNN framework (TF) : https://github.com/sailab-code/gnn

GNN framework (PyTorch): https://github.com/mtiezzi/torch_gnn
GNN documentation: http://sailab.diism.unisi.it/gnn
LP-GNNs repository: https://github.com/mtiezzi/1lpgnn

Matteo Tiezzi
https://mtiezzi.github.io/
¥ @TiezziMatteo

https://arxiv.org/abs/2002.07684
https://arxiv.org/abs/2005.02392
https://github.com/sailab-code/gnn
https://github.com/mtiezzi/torch_gnn
http://sailab.diism.unisi.it/gnn
https://github.com/mtiezzi/lpgnn
https://mtiezzi.github.io/

References

Bojchevski, Aleksandar et al. “Scaling graph neural networks with approximate pagerank”. In: Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020, pp. 2464-2473.

Dwivedi, Vijay Prakash et al. “Benchmarking graph neural networks”. In: arXiv preprint arXiv:2003.00982 (2020).
Errica, Federico et al. “A fair comparison of graph neural networks for graph classification”. In: arXiv preprint
arXiv:1912.09893 (2019).

Frasconi, Paolo, Marco Gori, and Alessandro Sperduti. “A general framework for adaptive processing of data
structures”. In: IEEE transactions on Neural Networks 9.5 (1998), pp. 768-786.

Gilmer, Justin et al. “Neural message passing for quantum chemistry”. In: arXiv preprint arXiv:1704.01212 (2017).
Grover, Aditya and Jure Leskovec. “node2vec: Scalable feature learning for networks”. In: Proceedings of the 22nd
ACM SIGKDD international conference on Knowledge discovery and data mining. 2016, pp. 855-864.

Hamilton, Will, Zhitao Ying, and Jure Leskovec. “Inductive representation learning on large graphs”. In: Advances
in neural information processing systems. 2017, pp. 1024-1034.

Kapoor, Amol et al. “Examining covid-19 forecasting using spatio-temporal graph neural networks”. In: arXiv
preprint arXiv:2007.03113 (2020).

36

Kipf, Thomas N and Max Welling. “Semi-supervised classification with graph convolutional networks”. In: arXiv
preprint arXiv:1609.02907 (2016).

Li, Qimai, Zhichao Han, and Xiao-Ming Wu. “Deeper insights into graph convolutional networks for
semi-supervised learning”. In: Thirty-Second AAAI Conference on Artificial ntelligence 2018.

Loukas, Andreas. “What graph neural networks cannot learn: depth vs width”. In: International Conference on
Learning Representations. 2019.

Monti, Federico et al. “Geometric deep learning on graphs and manifolds using mixture model cnns”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, pp. 5115-5124.

Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. “Deepwalk: Online learning of social representations”. In:
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. 2014,
pp. 701-710.

Platt, John C and Alan H Barr. “Constrained differential optimization”. In: Neural Information Processing Systems.
1988, pp. 612-621.

Rossi, Alberto et al. “Inductive-transductive learning with graph neural networks”. In: IAPR Workshop on Artificial
Neural Networks in Pattern Recognition. Springer. 2018, pp. 201-212.

Scarselli, Franco et al. “Graph neural networks for ranking web pages”. In: The 2005 IEEE/WIC/ACM International
Conference on Web Intelligence (WI'05). IEEE. 2005, pp. 666—672.

Scarselli, Franco et al. “The graph neural network model”. In: IEEE Transactions on Neural Networks 201 (2008),
pp. 61-80.

37

Tiezzi, Matteo et al. “A Lagrangian Approach to Information Propagation in Graph Neural Networks”. In: vol. 325.
Giacomo, Giuseppe De. I0S Press, 2020, pp. 1539-1546. URL: https://doi.org/10.3233/FAIA200262.

Velickovic, Petar et al. “Graph attention networks”. In: arXiv preprint arXiv:1710.10903 (2017).

Weisfeiler, Boris and Andrei A Lehman. “A reduction of a graph to a canonical form and an algebra arising during
this reduction”. In: Nauchno-Technicheskaya Informatsia 2.9 (1968), pp. 12-16.

Xu, Keyulu et al. “How powerful are graph neural networks?” In: arXiv preprint arXiv:1810.00826 (2018).

- "How Powerful are Graph Neural Networks?” In: International Conference on Learning Representations. 2018.

38

https://doi.org/10.3233/FAIA200262

	The Graph Neural Network Model
	Theoretically Expressive GNNs
	A Lagrangian Approach to Information diffusion in GNNs LP-GNNs Matteo Tiezzi, Giuseppe Marra, Stefano Melacci, Marco Maggini, Marco Gori
	References

